邢唷��>� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������欹�%` ��wbjbjN郚� <€,�,�4�&U�������     2 BNBNBN8zN�Q|2 崠v嶲�FR"hRhRhR_Z�[DI[$T�V�V�V�V�V�V�$�hk��z�� 膆Z^_Z膆膆z�hRhR�麜&xxx膆X �hR hRT�x膆T�xxr竵T�J p�hR俀 恆�#惿BNr� �钄l!�l崠�VG�鈜�G�p�p�G� 剛dm[_�xgbT籨 m[m[m[z�z�竪dm[m[m[崠膆膆膆膆2 Dv �Z �#�/d2 v Z �/2 2 2 ���� Soil microbial respiration in arctic soil does not acclimate to temperature Authors: Iain P. Hartley1,*, David W. Hopkins1,2, Mark H. Garnett3, Martin Sommerkorn4 and Philip A. Wookey1 Affiliations: 1 School of Biological and Environmental Sciences, 我要吃瓜, Stirling, FK9 4LA, UK 2 Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK 3 NERC Radiocarbon Laboratory, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Glasgow G75 0QF 4 Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK E-mails: Iain P. Hartley:  HYPERLINK "mailto:i.p.hartley@stir.ac.uk" i.p.hartley@stir.ac.uk David W. Hopkins:  HYPERLINK "mailto:d.w.hopkins@scri.ac.uk" d.w.hopkins@scri.ac.uk Mark H. Garnett:  HYPERLINK "mailto:M.Garnett@nercrcl.gla.ac.uk" M.Garnett@nercrcl.gla.ac.uk Martin Sommerkorn:  HYPERLINK "mailto:M.Sommerkorn@macaulay.ac.uk" M.Sommerkorn@macaulay.ac.uk Philip A. Wookey:  HYPERLINK "mailto:philip.wookey@stir.ac.uk" philip.wookey@stir.ac.uk Running title: Thermal acclimation of microbial respiration Keywords: Acclimation, adaptation, arctic, carbon cycling, climate change, CO2, respiration, microbial community, soil, temperature Article type: Letter Number of words in abstract: 169 Number of words in article: 4497 Number of references: 50 Number of figures: 2 Number of tables: 0 Correspondence author (*): Iain P. Hartley, School of Biological and Environmental Sciences, 我要吃瓜, Stirling, FK9 4LA, UK; E-mail:  HYPERLINK "mailto:i.p.hartley@stir.ac.uk" i.p.hartley@stir.ac.uk Tel: +44 1786 467757; Fax: +44 1786 467843 Abstract Warming-induced release of CO2 from the large carbon (C) stores present in arctic soils could accelerate climate change. However, declines in the response of soil respiration to warming in long-term experiments suggest that microbial activity acclimates to temperature, greatly reducing the potential for enhanced C losses. As reduced respiration rates could be equally caused by substrate depletion, evidence for thermal acclimation remains controversial. To overcome this problem, we carried out a cooling experiment with soils from arctic Sweden. If acclimation causes the reduction in respiration observed in warming experiments, then it must also subsequently increase rates post cooling. We demonstrate that thermal acclimation did not occur. Rather, over the following 90 days, cooling resulted in a further reduction in respiration which was only reversed by extended reexposure to warmer temperatures. We conclude that, over the time scale of a few weeks to months, warming-induced changes in the microbial community in arctic soils will amplify the instantaneous increase in the rates of CO2 production. Key words: Adaptation, acclimation, arctic, carbon cycling, climate change, CO2, respiration, microbial community, soil, temperature INTRODUCTION Rising global temperatures are likely to increase the rate of soil organic matter decomposition resulting in a substantial release of CO2 (Raich & Schlesinger 1992; Kirschbaum 1995), and this phenomenon has the potential to accelerate climate change by up to 40% (Cox et al. 2000). In fact, the importance of soil C-cycling is recognized in the updated IPCC scenarios (IPCC 2007). However, increasingly, ecologists are recognizing that in order to predict long-term trends in ecosystem C fluxes and biological feedbacks, greater emphasis needs to be placed on measuring potential acclimation and adaptation responses (Oechel et al. 2000; Enquist 2007). Critically, acclimation has the potential to reduce the projected soil-C losses associated with global warming (Luo et al. 2001). Respiratory thermal acclimation has been defined as 搕he subsequent adjustment in the rate of respiration to compensate for an initial change in temperature� (Atkin & Tjoelker 2003). When many plant species are exposed to higher temperatures for a prolonged period of time, physiological acclimation results in a reduction in respiration rates allowing for the maintenance of a positive C balance (Atkin & Tjoelker 2003). Similarly, thermal acclimation of respiration has been demonstrated for both ectomycorrhizal (Malcolm et al. 2008) and arbuscular mycorrhizal fungi in soils (Heinemeyer et al. 2006), and the fungal symbiont in lichens (Lange & Green 2005). Further, although cooling reduces respiration rates, prolonged exposure often results in a subsequent increase in plant respiration rates, allowing for the maintenance of critical metabolic processes (Armstrong et al. 2006). Many physiological modifications have been observed in microbial communities present at low temperatures which allow for continued growth (D扐mico et al. 2006), and this may suggest that there is potential for up-regulation of activity following extended exposure to the cold. In soils, although increased rates of respiration have been observed in many warming experiments (Rustad et al. 2001), the magnitude of the initial positive response to temperature often declines over time (Rustad et al. 2001; Eliasson et al. 2005). Because alterations in microbial community structure accompany soil warming in both the field (Zhang et al. 2005) and the laboratory (Zogg et al. 1997; Andrews et al. 2000; Pettersson & B邋th 2003; Pietik鋓nen et al. 2005), as well as in response to seasonal changes in temperature (Schadt et al. 2003; Lipson & Schmidt 2004; Wallenstein et al. 2007), the reduction in the initial positive response of soil respiration to warming may be the result of acclimation of microbial respiration (Luo et al. 2001; Balser et al. 2006; Luo 2007; Wan et al. 2007). Investigating temperature responses of soil respiration and microbial activity is complicated by the fact that the effect of experimental soil warming is confounded by the depletion of the most readily-decomposable soil C fractions. This could equally explain the reduction in respiration rates observed in long-term studies (Rustad et al. 2001; Eliasson et al. 2005). Consequently, the main evidence for thermal acclimation of soil microbial respiration remains questionable (Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005; Hartley et al., 2007b). Identifying the potential for thermal acclimation of microbial respiration in arctic regions is particularly important due to the high rates of global warming already being experienced at high latitudes (ACIA 2005), the general sensitivity of communities close to environmental extremes to changing conditions, and the large amounts of C stored in these systems (Post et al. 1982). In addition, substantial changes in microbial communities have been observed between seasons in tundra soils (Schadt et al. 2003; Lipson & Schmidt 2004; Wallenstein et al. 2007) raising the possibility of acclimation of microbial respiration in these systems. Accurate predictions of the long-term rates of C and nitrogen cycling in arctic soils, which in turn may determine total ecosystem C storage (Hobbie et al. 2000), plant productivity (van Wijk et al. 2005) and species composition (Weintraub & Schimel 2005), require a much greater understanding of microbial acclimation responses. Here we present the results from one of the first studies to investigate the effect of an extended period of cooling on microbial respiration, utilizing organic soils taken from a sub-arctic tundra heath system in northern Sweden. If thermal acclimation is responsible for the down-regulation of microbial activity observed at high temperatures, then microbial activity must be gradually up-regulated when temperatures are reduced. This is because, as a compensatory response, acclimation must be reversible; otherwise temporary exposure to higher temperatures would result in a permanent down-regulation of respiration, preventing the recovery of rates even when temperature have declined, for example between summer and winter. In support of this logic, changes in soil microbial community structure have been observed both when soil temperatures increase (Andrews et al. 2000; Lipson & Schmidt 2004) and decrease (Schadt et al. 2003; Monson et al. 2006), and the thermal optimum for the activity of key C-cycling enzymes has been to shown increase and decrease with seasonal changes in temperature (Fenner et al. 2005). Furthermore, thermal acclimation of plant respiration, in response to seasonal and experimental changes in temperature, is dynamic and reversible, occurring both in response to warming and cooling (Atkin & Tjoelker 2003; Atkin et al. 2005; Zaragoza-Castells et al. 2008). Therefore, the use of experimental cooling allowed us to minimize the confounding factor of warming-induced substrate depletion (substrate depletion will occur at a slightly faster rate in the control soils, but total carbon losses should be sufficiently small to avoid confounding the results) whilst still determining whether soil microbial respiration acclimates to temperature. We demonstrate that (i) soil microbial respiration does not acclimate to temperature, (ii) the short-term temperature sensitivity of respiration is unaltered by the prevailing temperature regime, and (iii) when soil temperatures were reduced for an extended period of time, changes in the microbial community resulted in a further decrease in the baseline rate of respiration, lowering rates of CO2 production beyond the instantaneous response to temperature. METHODS Soil sampling and incubation On 13th September 2006, twenty-six soil cores (68爉m diameter and 100爉m deep) were removed from an area of tundra heath above the tree-line (at an altitude of approximately 750爉), about 200爇m north of the Arctic Circle, near Abisko, northern Sweden (68o18�07拻N, 18o51�16拻E). The mean annual temperature at this site is 1oC with mean January and July temperatures of -12 and 11oC, respectively (van Wijk et al. 2005). The dominant plant species are ericaceous shrubs, mainly of the genera Vaccinum and Empetrum, with some dwarf birch (Betula nana L.) also present. The soils have an organic horizon of between approximately 5 and 20燾m deep (mean depth = 11燾m), overlying well-drained medium to coarse-grained till deposits with some large boulders and intermittent pockets of mineral soil. In this study, only the organic horizon was sampled. This soil is well-suited for investigating the long-term response of soil microbial respiration to changing temperatures because it contains a large amount of C, but does not experience waterlogging (except briefly during spring melt), and field conditions can thus be well replicated in the laboratory. Further, issues such as the mineral protection of SOM changing with temperature are avoided (Rasmussen et al. 2006). The soils were transported to the 我要吃瓜 using cooled air cargo. The water content of the soil was raised to water holding capacity (WHC) and samples were placed in an incubator (MIR-153, SANYO, Loughborough, UK) at 10oC (�1oC) for 110 days to allow respiration rates to stabilize as the most labile C pool was depleted and for the microbial community to adjust to this temperature. Sixteen cores were then transferred to a separate incubator (same make and model) set at 2oC (�1oC). Of these 16 cores, 10 were then maintained at 2oC for 90 days (high-low treatment), and the other 6 cores were returned to the 10oC incubator after 60 days at 2oC (the high-low-high treatment). The remaining 10 cores were maintained at 10oC for the whole 200-day incubation (constant high treatment). Soil samples were maintained at WHC throughout by frequent addition of distilled water. Data loggers (Tinytag� Plus, Gemini Data Loggers Ltd., Chichester, UK) connected to thermistor probes (PB-5001, Gemini Data Loggers Ltd., Chichester, UK) confirmed that the temperatures in the incubators remained stable. The incubation temperatures used are within the range regularly experienced by the soil during the growing season, and soil temperatures were not reduced below 0oC to avoid changes in substrate availability caused by the alterations in the proportion of liquid water present (Mikan et al. 2002; Monson et al. 2006) and freeze-thaw effects. Respiration measurements Respiration measurements were carried out using an infra-red gas analyzer (EGM-4, PP Systems, Hitchen, UK) connected to an incubation chamber (700 ml Lock & Lock� container, Hana Cobi Plastic Co Ltd., Seoul, Korea) in a closed loop configuration. The rate of CO2 accumulation in the headspace was logged every 1.6 seconds until a 35爌pm increase in CO2 concentration had occurred. Therefore, measurements were made close to ambient CO2 concentrations. Respiration rates were expressed as m餲�C�g C1�h1. Finally, at the end of the incubation, the short-term temperature sensitivity of respiration (between 2 and 10oC) in six replicates taken from the high-low and constant high treatments was measured. The samples were transferred to an incubator at 2oC, and one day later respiration rates were measured. The incubator temperature was then raised to 6oC and subsequently 10oC, before being reduced back to 6oC and then 2oC. The soils were maintained at each new temperature for approximately 24 hours. Mean respiration rates were calculated at each temperature to allow changes in baseline rates of respiration over the five-day experiment to be included in the Q10 calculation (Fang et al. 2005). Changes in baseline rates of respiration could have been caused by changes in soil moisture (although samples were watered each day), or growth of microbial biomass in the previously cooled soils (Monson et al. 2006). The aim of this temperature manipulation was to determine whether the direct or instantaneous response of respiration to temperature had been altered by the cooling treatment and, therefore, we wanted to account for any changes in baseline rates. Respiration rates were natural log transformed and plotted against temperature. Linear regressions were then used to calculate the slope (K) of the relationship and Q10 values calculated using Equation 1. Q10=爀10K Equation 1 Substrate-induced respiration At the end of the experiment, soil from all 26 samples was sieved through a 2爉m mesh, large root fragments were removed and sub-samples dried for moisture and C content (loss on ignition) determination. After all samples had been incubated at 10oC over-night, a solution containing 15 mg of glucose per gram of soil C was added to a 5爂 (fresh wt.) sub-sample of each soil, with the corresponding volume (1 cm3) of distilled water added to a further 5 g sub-sample. Total CO2 production after 24 hours at 10oC was measured using gas chromatography (Model 90-P, Varian Aerograph, Palo Alto, CA, USA). The difference between the two treatments was considered to represent substrate-induced respiration (SIR), which is considered to be proportional to the size of microbial biomass (Anderson & Domsch 1978). Statistics Statistical analyses were carried out using SPSS (SPSS Science, version 15, Birmingham, UK). Before cooling, one-way ANOVAs were used to determine whether there were any significant differences between the respiration rates of the soils in the different temperature treatment groups. Post-cooling, for the high-low and high-low-high samples, linear regressions were used to determine whether the respiration rates changed significantly over the following 60 days. After the high-low-high samples were returned to 10oC, repeated measures ANOVAs and paired ttests were used to determine whether there were significant differences between dates, both immediately before and after the cooling treatment was applied, and between the high-low-high and constant high treatments. At the end of the incubation, independent samples t-tests were used to determine whether the short-term temperature sensitivity of respiration differed significantly between the high-low and constant high soils, and paired t-tests were used to determine whether respiration rates differed between the increasing and decreasing phase of the manipulation. An independent samples t-test was used to determine whether the rate of SIR differed between samples that were at 10oC at the end of the experiment (as there was no significant difference between the two treatments, constant high and high-low-high soils were grouped together) compared with the soils that were at 2oC at the end of the incubation (the high-low soils). RESULTS Respiration rates Before cooling, there were no significant differences in respiration rates measured at 10oC between the soils in the three temperature treatments (P�=�0.622; Fig. 1a). On day 110, the high-low and high-low-high cores were cooled from 10oC to 2oC and the following day the respiration rates had declined by about 67%. Over the following 60 days, rather than an increase in the rate of respiration indicative of acclimation, respiration rates declined significantly by on average 28% (Fig. 1b). The effect of temperature manipulation on the rate of respiration can be expressed using Q10 functions (Equation 1):  SHAPE \* MERGEFORMAT  Equation 1 Where RT is the respiration rate at temperature (T), R0 is the respiration rate at 0oC and Q10 is the proportion change in the rate of respiration given a 10oC change in temperature. The equations corresponding to the mean effect of cooling for 1 and 60 days across both the high-low and high-low-high soils are as follows:  SHAPE \* MERGEFORMAT  Day 1  SHAPE \* MERGEFORMAT  Day 60 The reduction in the baseline rate of respiration caused by the cooling treatment has increased the apparent temperature sensitivity of respiration by ~50% (i.e. Q10 values have increased from 4.01 to 6.06). However, in the high-low treatment, about 50 days after cooling, respiration rates stabilized with there being no significant subsequent change in rates between days 157 and 200 (linear regression: P�=�0.404; Fig. 1). In contrast, over the entire incubation period, the respiration rate of the constant high cores did not change significantly (linear regression: P�=�0.359) indicating that the gradual reduction in respiration rates only occurred when soil temperatures were reduced. These results demonstrate that sustained exposure to low temperatures amplified the negative effect of cooling on soil respiration rates. On day 171, the high-low-high cores were returned to 10oC and respiration rates increased by approximately 72%. However, this rate was significantly less than that measured on day 109, immediately before the temperature reduction (paired ttest: P�=�0.037; Fig.�1c). This indicated that the reduction in respiration rates observed at 2oC was still apparent when samples were returned to 10oC. Over the following 28 days (i.e. days 172-200) the respiration rate increased by approximately 22% with the rate measured on day 193 differing significantly from the rate measured on day 172 (P�=�0.028; Fig.�1c). Further, the increase in respiration rates during this period only occurred in the high-low-high samples and not in the constant high samples (P�=�0.026; Fig. 1c). Thus, extended exposure to 10oC was required for the respiration rates to recover to their pre-cooling levels. Temperature sensitivity of respiration At the end of the 200-day incubation period, the response of the constant high and high-low samples to short-term changes in temperature was investigated. Overall, respiration rates were highly temperature sensitive, but there was no significant difference between treatments (Fig.�2; P�=�0.149) suggesting that extended exposure to 2oC had not resulted in microbial respiration becoming more (or less) temperature sensitive. However, the response of respiration to the increasing phase of the temperature manipulation was significantly higher in the high-low soils than in the constant high soils (high-low: Q10�=�4.736�0.248; constant爃igh: Q10�=�3.959�0.189; P�=�0.032). This appeared to have been caused by a significant increase in the baseline rate of respiration in the high-low soils as demonstrated by significantly (or marginally significantly) higher rates of respiration on the declining phase of the temperature manipulation (Fig. 2; 6oC: P�=�0.053, 2oC: P�=�0.001). No corresponding significant increase in the rate of respiration was observed in the constant-high treatment. The Q10 values calculated for the declining phase of the manipulation were similar and not significantly different (high-low: Q10�=�3.859�0.214; constant爃igh: Q10�=�3.655�0.197; P�=�0.497). Substrate-induced respiration A significantly greater rate of SIR (measured at 10oC in all cases) was observed in the soil samples that were at 10oC at the end of the experiment compared to those that were at 2oC (t-test: P�=�0.027; 75.3 vs. 66.7 m餲�C�g1 soil C�h1). DISCUSSION Thermal acclimation Our soil-cooling experiment produced no evidence that microbial respiration acclimates to temperature. The length of incubation carried out in our experiment should have allowed for thermal acclimation of microbial respiration to occur given that changes in microbial communities have been observed between seasons in tundra soils (Schadt et al. 2003; Lipson & Schmidt 2004; Wallenstein et al. 2007), and in response to temperature changes in laboratory experiments of a similar duration (Pettersson & B邋th 2003). Therefore, our results provide support for the modeling studies (Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005) that have proposed that the decline in the initial positive response of soil respiration to increased temperatures in long-term warming studies is due to substrate depletion and not acclimation of microbial respiration. Unlike plants it appears that the respiration of free-living, heterotrophic soil microbes does not acclimate to temperature. This is perhaps not surprising given the fundamental differences that exist between autotrophic and heterotrophic organisms. Whilst physiological acclimation serves to maintain a positive C balance in plants when shifted to a higher growth temperature (Atkin & Tjoelker 2003), it is unclear what advantage microbes would gain from reduced activity once temperature constraints have been relaxed. Thermal acclimation has been observed in mycorrhizal fungi (Heinemeyer et al. 2006; Malcolm et al. 2008) and the fungal component of lichens (Lange & Green 2005), but the activity of these microbes is tightly linked to, and controlled by (Heinemeyer et al. 2006), the rate of photosynthesis in their symbiotic partners. As such, these organisms are not representative of free-living heterotrophic microbes in soils. Previously, it has been shown that the temperature sensitivity of microbial activity may increase in microbial communities adapted to low temperatures (Monson et al. 2006), and that it may be the temperature response rather than the baseline rate of respiration that changes when systems acclimate to temperature (Luo et al. 2001; Wan et al. 2007). However, we found little evidence for the microbial respiration being more temperature sensitive in the cooled soils. The apparent down-regulation of the temperature response, that was observed in previous studies (Luo et al. 2001; Wan et al. 2007), was based on changes in seasonal Q10s in intact plant-soil systems. These results could have been caused by seasonal changes in the contributions of roots versus soil microbes to total belowground respiration. Hartley et al. (2007a) demonstrated that rhizosphere respiration responded less to soil warming than microbial respiration in bare soil. As the contribution of the more temperature insensitive flux, rhizosphere respiration, is likely to be greatest during mid season, a time when soil temperatures are likely to be highest, this could explain the apparent reduction in the temperature sensitivity of respiration in warmed plots (i.e. differences between warmed and ambient plots are expected to be lowest during the time of year when rhizosphere respiration contributes the most to belowground respiration). Our results indicate that it is unlikely that the development of a microbial community which responds little to changes in temperature can explain the lower seasonal Q10s measured in the warmed plots in previous studies (Luo et al. 2001; Wan et al. 2007). In our study, by carrying out our measurements in the absence of a rhizosphere, we avoided the possibility of microbial responses being mediated through changes in plant activity. Adaptation enhancing a positive feedback Our study goes further than demonstrating that thermal acclimation does not occur in these sub-arctic soils. Exposure to low temperatures for an extended period reduced the rate of respiration beyond the initial short-term response (Fig. 1b) and, similarly, extended exposure to moderate temperatures resulted in an increase in activity beyond the instantaneous response to temperature (Fig. 1c). Further, as the rate of SIR (measured at 10oC in all cases) was significantly lower in the cooled soils, it appears the microbial community had been affected. Whether the lower SIR rate in the cooled soil was due to a reduction in microbial biomass per se or reflected a shift in microbial community structure is debatable. However, the results from our study suggest that the microbial community was altered by the cooling and that this resulted in a further reduction in respiration rates. Therefore, at the low to moderate temperatures experienced in many soils, such as the arctic soil investigated here, when global warming increases soil temperatures it seems probable that C losses will be enhanced by changes in microbial community functioning. In support of this suggestion, a soil-warming study demonstrated that, during winter months, microbial activity in warmed plots was higher than in control plots even when measurements were made at a common temperature; it was concluded that warming had produced a more active microbial community (Hartley et al. 2007a). Further, it has been demonstrated that the temperature optimum for the activity of key microbial enzymes in organic soils may shift with time of year (Fenner et al. 2005), and that thermal tolerances of bacterial community activity gradually change in response to temperature manipulations (Pettersson & B邋th 2003). Rather than a compensatory response, it appears that, in the longer term, changes in the microbial community may result in a further increase in activity as temperatures rise. Therefore, soil-C losses from cold environments, and during winter periods, are likely to be enhanced by climate change due to changes in soil microbial communities amplifying the instantaneous response to temperature. Here we return to the issue of terminology; the changes in the microbial community which resulted in the decreasing rate of respiration for the 60-day period after cooling, and the increase in the rate of respiration following warming of the high-low-high soils, should be termed adaptation as it almost certainly contains a genetic component. We reiterate that the term acclimation is probably never appropriate when referring to a change occurring at the level of the whole community. If a compensatory response is observed then perhaps the term 揷ompensatory adaptation� would be more appropriate. Previously, studies which have modeled mineralization kinetics based on the results of incubation studies have suggested that substrate pool sizes may increase at higher temperatures (MacDonald et al. 1995; Waldrop & Firestone 2004; Rasmussen et al. 2006). Molecules that decompose in reactions with large activation energies are likely to decompose especially slowly at low temperatures (Davidson & Janssens 2006; Hartley & Ineson 2008), but may become more available at increased temperatures, potentially explaining the increased pool sizes and shifts in substrate utilization patterns observed in these studies (e.g. Waldrop & Firestone 2004). Within this context, in the study presented here, the gradual reduction in respiration rates post-cooling may reflect a loss of the most labile pool of substrates which are most available to microbes at low temperatures. This may in turn have induced the changes in the microbial community that occurred (reflected by the reduction in SIR). On return to the warmer temperature, thermal constraints on substrate availability may have been relaxed and the microbes again adapted to their prevailing environment. This is just one potential explanation for the reduction in respiration rates that occurred post-cooling and the changes in the microbial community. However, it is clear that thermal acclimation of microbial respiration did not occur, and adaptive responses of soil microbes to increasing temperatures may accelerate decomposition rates, at least at the low to moderate temperatures experienced in many soils. Timescale of the response of microbial respiration to warming In light of the findings of this study we can perhaps consider three separate processes which may determine the rate of soil C losses from arctic soils over different timescales. Firstly, in agreement with the study of Mikan et al. (2002), we found a strong instantaneous response of microbial respiration to changes in temperature (Fig.�2). When changes in the baseline rate of respiration were accounted for it appeared that the temperature sensitivity of respiration was not affected by the thermal regime the microbes had experienced. Secondly, cooling reduced the baseline rate of respiration as the microbial community was altered by the new temperature, and this medium-term response to the temperature manipulation was reversible. It should be mentioned that there was some evidence of a faster response of the microbial community to the warming than the cooling treatment. It took almost 60 days for the full cooling effect to occur whilst rates had fully recovered within 30 days of warming in the high-low-high samples. In addition, there was some evidence of an almost immediate, partial up-regulation of the baseline rate of respiration in the high-low soils during the short-term temperature manipulation. Therefore, at a timescale of about 1 month, respiration rates are likely to increase in warmer arctic soils as changes in the microbial community result in an increase in the baseline rate. Thirdly, at the decadal time scale, there may be a change in both total SOM stocks as warming stimulates C loss, and also a change in the composition of SOM as substrate pools with shorter turnover times are preferentially lost (舋ren & Bosatta, 2002; Kirschbaum 2004; Eliasson et al. 2005; Knorr et al. 2005). These changes will result in a subsequent decline in the rates of microbial respiration. Finally, in situ, if higher decomposition rates increase soil nutrient availability (Schmidt et al. 2002; Pregitzer et al. 2008), increased plant productivity may partly or fully offset these C losses, and so determine the extent to which rates of microbial respiration decline. However, further research is required to estimate the importance of this potential feedback. CONCLUSION Compensatory thermal acclimation of soil microbial respiration did not occur in our experiment. Rather, the effect of temperature on microbial community functioning increased respiration rates beyond the instantaneous effect of temperature. This response may enhance substantially soil-C losses, at least at low to moderate temperatures. Taking into account the rapid rate of climate change predicted for high-latitude ecosystems, and the high temperature sensitivity of decomposition measured at low temperatures, the large C stores in arctic and alpine soils may be especially vulnerable. Given that they contain over 20% of soil C, increased decomposition in these ecosystems has the potential to accelerate climate change. Finally, our study highlights the need to consider not only the instantaneous responses of processes to changes in abiotic factors, but also any adaptive responses that may subsequently occur at the community or ecosystem level. This remains a major challenge for understanding and predicting ecological responses and biological feedbacks to climate change. ACKNOWLEDGEMENTS This work was carried out within the Natural Environment Research Council (NERC) funded Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project (a contribution to International Polar Year 2007-2008). We thank Lorna English and Laura-Lee Shillam for their help with the microbial biomass analyses. This manuscript was improved in response to the helpful comments of three referees. REFERENCES ACIA (2005). Arctic Climate Impact Assessment. Cambridge University Press, Cambridge. 舋ren, G.I. & Bosatta, E. (2002) Reconciling differences in predictions of temperature response of soil organic matter. Soil Biol. Biochem., 34, 129-132. Anderson, J.P.E. & Domsch, K.H. (1978). Physiological Method for Quantitative Measurement of Microbial Biomass in Soils. Soil Biol. Biochem., 10, 215-221. Andrews, J.A., Matamala, R., Westover, K.M. & Schlesinger, W.H. (2000). Temperature effects on the diversity of soil heterotrophs and the d�13C of soil-respired CO2. Soil Biol. Biochem., 32, 699-706. Armstrong, A.F., Logan, D.C., Tobin, A.K., O'Toole, P. & Atkin, O.K. (2006). Heterogeneity of plant mitochondrial responses underpinning respiratory acclimation to the cold in Arabidopsis thaliana leaves. Plant Cell Environ., 29, 940-949. Atkin, O.K., Bruhn, D., Hurry, V.M., Tjoelker, M.G. (2005). The hot and the cold: unravelling the variable response of plant respiration to temperature. Funct. Plant Biol., 32, 87-105. Atkin, O.K. & Tjoelker, M.G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci., 8, 343-351. Balser, T.C., McMahon, K.D., Bart, D., Bronson, D., Coyle, D.R., Craig, N., Flores-Mangual, M.L., Forshay, K., Jones, S.E., Kent, A.E. & Shade, A.L. (2006). Bridging the gap between micro - and macro-scale perspectives on the role of microbial communities in global change ecology. Plant Soil, 289, 59-70. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A. & Totterdell, I.J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. D'Amico, S., Collins, T., Marx, J.C., Feller, G. & Gerday, C. (2006). Psychrophilic microorganisms: challenges for life. EMBO rep., 7, 385-389. Davidson, E.A. & Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173. Eliasson, P.E., McMurtrie, R.E., Pepper, D.A., Stromgren, M., Linder, S. & 舋ren, G.I. (2005). The response of heterotrophic CO2 flux to soil warming. Glob. Change Biol., 11, 167-181. Enquist, B. J. (2007). Journal Club - An Ecologist wonders how biotic feedback matters to global-change research. Nature, 450, 139. Fang, C.M., Smith, P., Moncrieff, J.B. & Smith, J.U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 433, 57-59. Fenner, N., Freeman, C. & Reynolds, B. (2005). Observations of a seasonally shifting thermal optimum in peatland carbon-cycling processes; implications for the global carbon cycle and soil enzyme methodologies. Soil Biol. Biochem., 37, 1814-1821. Hartley, I.P., Heinemeyer, A., Evans, S.P. & Ineson, P. (2007a). The effect of soil warming on bulk soil vs. rhizosphere respiration. Glob. Change Biol., 13, 2654-2667. Hartley, I.P., Heinemeyer, A., & Ineson, P. (2007b). Effects of three years of soil warming and shading on the rate of soil respiration: substrate availability and not thermal acclimation mediates observed response. Glob. Change Biol., 13, 1761-1770. Hartley, I.P. & Ineson, P. (2008) Substrate quality and the temperature sensitivity of soil organic matter decomposition. Soil Biol. Biochem., doi: 10.1016/j.soilbio.2008.01.007. Heinemeyer, A., Ineson, P., Ostle, N. & Fitter, A.H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol., 171, 159-170. Hobbie, S.E., Schimel, J.P., Trumbore, S.E. & Randerson, J.R. (2000). Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol., 6, 196-210. IPCC (2007) Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, 2007. Kirschbaum, M.U.F. (1995). The temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storage. Soil Biol. Biochem., 27, 753-760. Kirschbaum, M.U.F. (2004). Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Glob. Change Biol., 10, 1870-1877. Knorr, W., Prentice, I.C., House, J.I. & Holland, E.A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298-301. Lange, O.L. & Green, T.G.A. (2005). Lichens show that fungi can acclimate their respiration to seasonal changes in temperature. Oecologia, 142, 11-19. Lipson, D.A. & Schmidt, S.K. (2004). Seasonal changes in an alpine soil bacterial community in the Colorado Rocky Mountains. Appl. Environ. Microbiol., 70, 2867-2879. Luo, Y. (2007) Terrestrial Carbon朇ycle Feedback to Climate Warming. Annu. Rev. Ecol. Evol. Syst., 38, 683-712. Luo, Y., Wan, S.Q., Hui, D.F. & Wallace, L.L. (2001). Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413, 622-625. MacDonald, N.W., Zak, D.R. & Pregitzer, K.S. (1995). Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Sci. Soc. Am. J., 59, 233-240. Malcolm, G.M., L髉ez-Guti閞rez, J.C., Koide, R.T. & Eissenstat, D.M. (2008) Acclimation to temperature and temperature sensitivity of metabolism by ectomycorrhizal fungi. Glob. Change Biol., doi: 10.1111/j.1365-2486.2008.01555.x. Mikan, C.J., Schimel, J.P. & Doyle, A.P. (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol. Biochem., 34, 1785-1795. Monson, R.K., Lipson, D.L., Burns, S.P., Turnipseed, A.A., Delany, A.C., Williams, M.W. & Schmidt, S.K. (2006). Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439, 711-714. Oechel, W.C., Vourlitis, G.L., Hastings, S.J., Zulueta, R.C., Hinzman, L. & Kane, D. (2000). Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406, 978-981. Pettersson, M. & B邋th, E. (2003). Temperature-dependent changes in the soil bacterial community in limed and unlimed soil. FEMS Microbiol. Ecol., 45, 13-21. Pietik鋓nen, J., Pettersson, M. & B邋th E. (2005). Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol. Ecol., 52, 49-58. Post, W.M., Emanuel, W.R., Zinke, P.J. & Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature, 298, 156-159. Pregitzer, K.S., Burton, A.J., Zak, D.R. & Talhelm, A.F. (2008). Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Glob. Change Biol., 14, 142-153. Raich, J.W. & Schlesinger, W.H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B, 44, 81-99. Rasmussen, C., Southard, R.J. & Horwath, W.R. (2006). Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Glob. Change Biol., 12, 834-847. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C. & Gurevitch, J. (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562. Schadt, C.W., Martin, A.P., Lipson, D.A. & Schmidt, S.K. (2003). Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science, 301, 1359-1361. Schmidt, I.K., Jonasson, S., Shaver, G.R., Michelsen, A. & Nordin, A. (2002). Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil, 242, 93-106. van Wijk, M.T., Williams, M. & Shaver, G.R. (2005). Tight coupling between leaf area index and foliage N content in arctic plant communities. Oecologia, 142, 421-427. Waldrop, M.P. & Firestone, M.K. (2004). Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochem., 67, 235-248. Wallenstein, M.D., McMahon, S. & Schimel, J. (2007). Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiol. Ecol., 59, 428-435. Wan, S., Norby, R.J., Ledford, J. & Weltzin, J.F. (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol., 13, 2411-2424. Weintraub, M.N. & Schimel, J.P. (2005). Nitrogen cycling and the spread of shrubs control changes in the carbon balance of arctic tundra ecosystems. Bioscience, 55, 408-415. Zogg, G.P., Zak, D.R., Ringelberg, D.B., MacDonald, N.W., Pregitzer, K.S. & White, D.C. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J., 61, 475-481. Zaragoza-Castells, J., S醤chez-G髆ez, D., Hartley, I.P., Matesanz, S., Valladares, F., Lloyd, J. & Atkin, O.K. (2008). Climate-dependent variations in leaf respiration in a dry-land, low productivity Mediterranean forest: the importance of acclimation in both high-light and shaded habitats. Funct. Ecol., 22, 172-184. Zhang, W., Parker, K.M., Luo, Y., Wan, S., Wallace, L.L. & Hu, S. (2005). Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Glob. Change Biol., 11, 266-277. FIGURE LEGENDS Figure 1 The mean soil respiration rates in the three different temperature treatments (constant high  �% , high-low " " " �%" " " , high-low-high   �%  ). Error bars represent �1SE (constant high and high-low: n�=�10; high-low-high: n�=�6). The main panel (a) shows the whole of the incubation period during which respiration measurements were made. The timing of the reduction in temperature from 10oC to 2oC in the high-low and high-low-high treatments is indicated as is the subsequent return to 10oC in the high-low-high treatment. Panels (b) and (c) highlight the periods of key interest. Panel (b) shows the decline in the rate of respiration at 2oC over the first 60 days at the lower incubation temperature in the high-low and high-low-high treatments. Linear regressions are fitted to each temperature treatment separately although there is no significant difference between the two fitted lines (high-low (dotted line): y�=�0.0112x�+�4.00, R2�=�0.817; high-low-high (dashed line): y�=�0.0135x�+�4.36, R2�=�0.815). Panel (c) shows the rate of respiration at 10oC in the high-low-high and constant high samples immediately after the high-low-high samples were returned to 10oC. The horizontal dashed line indicates the mean rate of respiration in the high-low-high samples on day 109 immediately before the high-low-high samples were transferred to 2oC. Initially the rate of respiration in the high-low-high samples was significantly less than on day 109 (paired t-test: P�=�0.037) and significantly lower than in the constant high treatment (ttest: P�=�0.044), but these differences were subsequently lost as the respiration rates in the high-low-high samples increased. A significant interaction term between time and temperature treatment (repeated measures ANOVA; P�=�0.026) indicated that the increase in respiration rates only occurred in the high-low-high samples. Figure 2 The response of respiration to the short-term changes in temperature in the high-low and constant high samples. Mean respiration rates on both the increasing and decreasing phase of the temperature manipulation are shown. Error bars represent +1SE (n�=�6). In the high-low samples, there was a significant increase in the rate of respiration measured at 2oC on the declining phase of the manipulation relative to the rate measured on the increasing phase (labeled �*�)..The mean Q10 values */2KLMNOXgj|���������- . / s t � � � # $ . @ 蝈蛴弪母瑺晧晧晧晧晧暊墪墪|n|n|]暊� h釩h/1�PJmH nHsH tHh釩h/1�H*PJmH sH h釩h/1�PJmH sH h釩h/1�H*mH sH h釩h/1�mH sH h釩h/1�5乵H sH h釩h��5乵H sH h釩h;a5乵H sH h釩hG-CJ aJ mH sH "h�9�h �5�>*CJ aJ mH sH h碏5丆J aJ mH sH h �5丆J aJ mH sH #MNOX���, - r s � � $ % . � � A �   ? @ � � �������������������������� $d��a$gd薳�$a$gd薳�gd薳�唘坴畍w@ A l m n � � � � � � � � � � � � � " # $ ? @ A R 疱羽起寤疇�爌牷鸹^餛鸹Eh-rh/1�6乵HsHh-rh/1�0JmHsH#�j�h釩h/1�UmH sH h-rh� V0JPJmHsH'�j�h�h� VPJUmH sH h-rh� VPJmHsHjh� VPJUmH sH h-rh/1�PJmHsHh-rh/1�mHsHh釩h/1�0JmH sH #�jh釩h/1�UmH sH h釩h/1�mH sH jh釩h/1�UmH sH R U V i � � � � � � � � � � � �    朐码篓詳噪墇塰z[z塆'h釩h(�6丳JaJmH nHsH tHh釩h/1�0JmH sH #�j�h釩h/1�UmH sH jh釩h/1�UmH sH h釩h/1�mH sH 'h-rh/1�0J6丳JmHnHsHtH2�j�h釩h/1�6丳JUmH nHsH tH#h-rh/1�6丳JmHnHsHtH,jh釩h/1�6丳JUmH nHsH tH'h-rh/1�6丳JaJmHnHsHtH      % & ) > ? @ H I J K W c � � � � � � � 曛庐聺塽玛致j\jN?N致曛h釩h 3�6丠*\乵H sH h釩h 3�6乗乵H sH h釩h#W�6乗乵H sH h#W�6乗乵H sH 'h釩h鄋6丳JaJmH nHsH tH'h釩h��6丳JaJmH nHsH tH!h��6丳JaJmH nHsH tH'h釩h24�6丳JaJmH nHsH tH'h釩h薳�6丳JaJmH nHsH tH'h釩h識x6丳JaJmH nHsH tH*h釩h識x5�6丳JaJmH nHsH tH� � � � � � � � � � � � �       3 4 5 7 8 9 J K 胴咆瘺噕eT涬瘺噀涬瘺嘋涬瘺!h�#,6丳JaJmH nHsH tH!hu"'6丳JaJmH nHsH tH!hO.76丳JaJmH nHsH tH!h~2�6丳JaJmH nHsH tH'h釩h;a6丳JaJmH nHsH tH'h釩h識x6丳JaJmH nHsH tH*h釩h識x5�6丳JaJmH nHsH tH$h釩h識xPJaJmH nHsH tH$h釩h薳�PJaJmH nHsH tH'h釩h薳�6丳JaJmH nHsH tH� � � � �   8 9 N O c d € ?jtu����XY�����������������������$勑d�`勑a$gd J� $d�a$gdQ $d��a$gdQ $d��a$gd薳�K M N O _ ` b c d y }  � � � � #%胱铆秒梺譵amJ8m8#h釩h薳�6丳JmH nHsH tH,jh釩h薳�6丳JUmH nHsH tHh釩h薳�6乵H sH 'h釩h薳�6丳JaJmH nHsH tH*h釩h薳�5�6丳JaJmH nHsH tH*h釩h識x5�6丳JaJmH nHsH tH*h釩h鄋5�6丳JaJmH nHsH tH'h釩h鄋6丳JaJmH nHsH tH'h釩h識x6丳JaJmH nHsH tH'h釩h;a6丳JaJmH nHsH tH%&'=>ijktu�������嫦幌€j_VHV?6V*h釩h� \乵H sH hv#�\乵H sH h=^m\乵H sH h�(Rh�(RH*\乵H sH h�(R\乵H sH h釩h2�mH sH *h釩h(�5�6丳JaJmH nHsH tH$h釩h鄋PJaJmH nHsH tH'h釩h(�6丳JaJmH nHsH tH'h釩h薳�6丳JaJmH nHsH tH'h釩h薳�0J6丳JmH nHsH tH,jh釩h薳�6丳JUmH nHsH tH2�j�h釩h薳�6丳JUmH nHsH tH�������'.<GOqr�����������.<>IY[\_bhip�鲰漤垡射衫渖渖瓷渖冷蓯射蓜纚踸踸踥c�h釩h8bI\乵H sH h釩h"\乵H sH hp:y\乵H sH h釩he�\乵H sH h釩h��\乵H sH h釩h� \乵H sH h釩hbx�\乵H sH hv#�hv#�\乵H sH h�$!\乵H sH h=^m\乵H sH h�?�\乵H sH h$b\乵H sH hv#�\乵H sH h�(R\乵H sH h-Eq\乵H sH &�����������������!"+,TVWZbchj鲰溘硐平拼桔桔狡其銎茤坾pdXh釩hbqB\乵H sH h釩hOg\乵H sH h釩hGU�\乵H sH h釩h螹�\乵H sH h釩hk`>*\乵H sH h釩hk`\乵H sH h踓�\乵H sH hl~}\乵H sH hp:y\乵H sH h�(R\乵H sH h��\乵H sH h釩h"\乵H sH hv#�\乵H sH h-Eq\乵H sH h$b\乵H sH h�$!\乵H sH j�����������������EU`dx�������鲰漤仨仨特汤汤刺ㄌ靥煐嶄杺z俽j俲俕�h釩h J�H*mH sH h J�mH sH h[<�mH sH h嘒�mH sH h釩h J�mH sH h[<�\乵H sH h嘒�\乵H sH hE�\乵H sH h釩h螹�\乵H sH h釩hw=\乵H sH h釩hbx�\乵H sH h釩h� \乵H sH h釩hGU�\乵H sH h J�\乵H sH hv#�\乵H sH h�!}\乵H sH #����!"$1FLWXYZfghn�����箸巯勖系厦勖坨媫rg\QgQFh釩hGU�mH sH h釩hQi;mH sH h釩h竈mmH sH h釩hp�mH sH h釩h(�mH sH h釩h(�5乗乵H sH h釩h�~5乗乵H sH h釩h薳�5乗乵H sH h釩h爓�5乗乵H sH h釩h 3�H*\乵H sH h釩h)gl\乵H sH h釩h 3�\乵H sH h釩h24�\乵H sH h釩h薳�\乵H sH h釩h�&�\乵H sH Yghx+[ '$�)�,�,�,�, - -2��������������� $d�a$gd�w $d�a$gd�$勑d�`勑a$gd�$勑d�`勑a$gd J�$勑d�`勑a$gd�S$勑d�`勑a$gdQ$勑d�`勑a$gd�&� $d�a$gd�<^ $d�a$gdQ��2;ptz€������������������� 箬菀羌凹钎殢噺|q歲|q|紎eZZ襔h釩h0jmH sH h釩h8ZzmH sH h釩hGU�\乵H sH h釩hBGFmH sH h釩h%5#mH sH hv#�mH sH h釩h*KKmH sH h釩hw�mH sH h釩h&r�mH sH h釩h�#6乵H sH h釩hfMamH sH h釩hGU�mH sH h釩h竈mmH sH h釩hp�mH sH h釩h]w�mH sH h釩hGU�H*mH sH %NOVpq����������iowx,蹶咴咛咴倪赃巩棇乿jv乢T_T_h釩h�6�mH sH h釩hCamH sH h釩h�<^6乵H sH h釩h�<^mH sH h釩h瞔�mH sH h釩h4�mH sH h釩h9vmH sH h釩h�#6乵H sH h釩hfMamH sH h釩h� �mH sH h��mH sH hemH sH h釩h%5#mH sH h釩h8ZzmH sH h釩h竈mmH sH h釩h`"mH sH f|���������������� MV�����<Wz�����蹶庵怅跷趺访跷醅が櫖憠懍檥櫖r琷瑱}櫖_h釩hV$kmH sH h嘒�mH sH h釩hQi;mH sH h釩h�#6乵H sH hEJImH sH h俹NmH sH h釩h�6�mH sH hH�mH sH h釩hCamH sH hw�h�#6乵H sH hw�h�6�mH sH h�*$mH sH hw�hw�6乵H sH hw�mH sH hw�hw�mH sH hw�hCamH sH %���������nt����������4>NSdjt��������������!'QW�蹶庾牾硝锨急ケ澅澅ケケケ澅澅睊啋饱饱睗睗眫饱饱�h�SmH sH h釩h j�6乵H sH h釩h j�mH sH hH�mH sH h釩h�<^6乵H sH h釩h�<^mH sH h釩h�&�mH sH h��mH sH h嘒�mH sH h釩hV$kmH sH h俹NmH sH h釩h巬lmH sH h釩hD~mH sH 1������� "*+�'opqx~�����������矜谝孚孚孚益阪事仿番姈s枈枴k琡�h釩hV$kmH sH h�*�mH sH h釩h�6乵H sH h釩h9vmH sH h釩h�#6乵H sH h釩hfMamH sH h釩h�mH sH h釩h+0mH sH h釩h4�mH sH hH�mH sH hiDCmH sH h�HmH sH h釩h�<^6乵H sH h釩h�<^mH sH jh�*�0JUmH sH "������   " ( - . / 5 ; @ J O V W X Z [ k x � � �!蹶踹躁呱静旧矝搰�遲laVaNahH�mH sH h釩hM{�mH sH h釩h�2mH sH hsTmH sH h釩h蒱lmH sH hWtLmH sH hGhG6乵H sH hGmH sH h釩h�6�mH sH h釩hgT 6乵H sH h釩h�#6乵H sH h釩hfMamH sH h釩h9vmH sH h釩hV$kmH sH h釩hgT mH sH h釩h+0mH sH h釩h#t�mH sH �!�!�!�!�!�!@"D"N"T"~"�"�"�"�"4#B#F#k#r#w#}#€#�#�#�#�#�#�#�#�#$$$"$#$%$&$箬菡吐郝吐荩槪槍槪輥vjv佪]樰b輇�hu9mH sH h釩h贠F6乵H sH h釩h贠FmH sH h釩hQ�mH sH h釩h~:6乵H sH h釩h~:mH sH h釩h� �mH sH h釩h�6乵H sH h#�mH sH h釩h�mH sH hg|tmH sH h�mH sH h釩hPmH sH h釩h�2mH sH h釩h�26乵H sH %&$'$�$�$�$�$�$ %%`%%€%�%�%�%�%�%�%�%�%�%�%�%&&&&&"&#&.&8&j&s&�&�&�&�&�&�&�&忭庾忭塘滋贡苔惫惫惫灃睅灩喒灩~箏vn杅�he�mH sH h��mH sH h籱fmH sH h<bmH sH hAGmH sH hU OmH sH h J�mH sH h�mH sH h釩h髒�mH sH hrlmH sH h+,mH sH h釩h��mH sH h釩h� mH sH h釩h�&�mH sH h釩h\tWmH sH h釩h?{pmH sH h�2mH sH (�&�&''�'�'�'�'�'�'�'�'�'�'�'(( (&(0(3(|(�(�(�(�(�(�(�(�(�(�(�(�(栲脏舌山舌编⿳┼呧}u}me]Uh[KHmH sH h巑mH sH h9'�mH sH h<bmH sH hAGmH sH hj}�mH sH h�:EmH sH h>Q/h>Q/6乵H sH h-rmH sH h��mH sH h>Q/mH sH h!ch J�6乵H sH h釩h J�6乵H sH h釩h J�mH sH ht3�h J�6乵H sH h J�mH sH h�mH sH h+,mH sH h��mH sH !�(�())))))),)N)P)e)g)m)s)x)z)�)�)�)�)�)�)�)�)�)�)�)桊嘭嘈嗳亟淡…檻厎懾umbWbOh �mH sH h釩h��mH sH h釩h?{pmH sH hi;�mH sH h蒫PmH sH h軵:mH sH hwr�hwr�6乵H sH hwr�mH sH h_n8mH sH h剘h剘6乵H sH h剘mH sH h39�mH sH h釩h39�mH sH hj}�mH sH h.a�mH sH h矪�mH sH h�(/mH sH hAGmH sH h9'�mH sH h巑mH sH �)�)�)�)***h*i*�*�*�*�*�*�*�*++/+P+S+f+n+s+�+ ,*,5,9,L,S,U,Y,Z,[,e,�,�,�,�,�,廒庖事室函夂獐zrz檢jzjrjz�h J�mH sH hrKfmH sH h碏mH sH h釩h�<^mH sH h釩h\tW>*mH sH h釩hB�mH sH h釩h\tWmH sH h釩h��mH sH h遱0mH sH hqk�mH sH hiV�mH sH h�>"mH sH h[KHmH sH h釩h?{pmH sH h釩h峏mH sH h�%tmH sH (�,�,�,�,�,�,�,�,�,�, ---m-n-w-�-�-�-�-�-�-�- . ...$.P.Q.R.箬嘭柰露珴拞拁v抧抳抳c拞拞扻PXh竱#mH sH h釩h竱#mH sH h釩h\tWmH sH h�SmH sH h遱0mH sH hOkfmH sH h釩h�~H*mH sH h釩h�~mH sH h釩h�~5乗乵H sH h釩h�mH sH h釩h�~5乵H sH h釩h瞔�mH sH h釩hyH�mH sH hrKfmH sH h J�mH sH h釩hB�mH sH h釩hB�H*mH sH R.S.�.�.�.�.�.�.�.�.�.�.�.�.////(/3/F/P/T/U/`/�/�/�/�/�/�/�/�/'0(0)090@0I0P0\0^0v0�0�0�0�0�0箬箬荑运没没茂茂幻C浕浽辉粨詻嫽媰浽迷辉没x嫽嫽h釩h薈smH sH hKOmH sH h�*�mH sH h�SmH sH hzcNmH sH h薈sh薈s6乵H sH h竱#h薈s6乵H sH h遱0mH sH h薈smH sH h竱#5乵H sH h竱#mH sH h釩h竱#6乵H sH h釩h竱#mH sH h釩h竱#H*mH sH /�0�0�0111&1(1I1�1�1�1�1�122I2M2T2v2�2�2�2�2�2�2�3�3�3�3�3�344&4'4,464>4x4y4�4�4�4�4�4�4蹴蹂礤蹂踮碲乌路宸矸矸牱矸窋帆帆穼乽h奧h�S6乵H sH h釩h�SmH sH h�SmH sH h釩h�~6乵H sH h釩hB�mH sH h釩h�~H*mH sH h釩h�~mH sH h�wh薈s5乵H sH h釩hG6乵H sH h釩hGmH sH h�*�mH sH h遱0mH sH h釩h薈smH sH .�4�4�4�4�4�4�45 55$5S5U5`5}5H6W6Y6�6�6m7s7y7~7�7�7�7�7�7�7�7&8,8v8蹶怅株侮玛封封封番牞晧暚}鈛i^i闢�h#�mH sH hnf4h�~mH sH h釩h�~5乵H sH h39�mH sH h釩hk,6乵H sH h釩h轍6乵H sH h釩h轍mH sH h釩hk,H*mH sH h釩hk,mH sH h釩hB�mH sH hHp�hHp�6乵H sH h艻kmH sH h釩h�~H*mH sH h遱0mH sH h釩h�~mH sH h釩h�SmH sH !2�7�7�7":g@k@桜楡禓稝轈�����{����p $d�a$gdQ$d�7$8$H$a$gdQ$勑d�`勑a$gdQ $d�a$gdQ $d�a$gdnf4P$勑d�E苺猾舊`勑a$gdX v8�8�8�8�8�8�8�89#9$9&9'9:9B9y9z9�9:: :::::�:;H;X;b;|;�; <� <�n<�o<��<��<��<��<��<��<��<��<�=犴夙傺磲碣磲碣马寒懋懋恝頄韸|妡妡妡妡妔�hnf4\乵H sH h釩h�~H*\乵H sH h釩h�~\乵H sH hHp�hHp�6乵H sH h釩h�~6乵H sH h釩h�~H*mH sH h贠mH sH h釩h�~OJQJmH sH h�SmH sH hnf4mH sH h釩h�~H*mH sH h釩h�~mH sH h#�mH sH ,==w=x=�=�=�=�=�=�=�=�=�=u>€>�>�>�>�>�>b?�?�?�?@@B@f@l@n@q@孈楡礍稝鲫拚揸顷画魂睁諢睁桍睁贞顷�媠媕^h釩h�~5乵H sH h;�5乵H sH h釩h�~H*mH sH h釩h�~H*mH sH h釩h�~mH sH h碏\乵H sH h7V<�h7V<�6乗乵H sH h釩h�#6乗乵H sH h釩h鴟%\乵H sH h釩h�~H*\乵H sH h7V<�\乵H sH h釩hn\乵H sH h釩h�~\乵H sH hYh�\乵H sH !稝覢轅顯馌傾瑼瓵糀褹,B-BLBQBRBTB払揃瓸矪碆鸅CCCC:CUCyCzC僀擟腃皴皴褓少羼今瀛羼濕巭巓巂庱羼羼亳h#�h#�CJaJmH sH h#�h#�B*CJaJphh#�h�~CJH*aJmH sH h#�h�~CJaJmH sH h釩h�~CJH*aJmH sH h3]�h3]�CJH*aJmH sH h�SCJaJmH sH h�h�CJH*aJmH sH h�CJaJmH sH h3]�CJaJmH sH h釩h�~CJaJmH sH  腃贑轈逤镃闏隒+D7DHDNDODEE%E*E7EAE臙褽郋闑頔顴FF疋稚弓偔巖巖幁b瓊璕瑽h�'h�&�6丆JaJmH sH h�&�h�&�CJH*aJmH sH h奧h奧6丆JaJmH sH h�Sh�S6丆JaJmH sH h�&�CJaJmH sH h�SCJaJmH sH h:l�CJaJh:l�h:l�CJaJh�&�CJaJmH sH h~U�h~U�5丆JaJmH sH h�.Z5丆JaJmH sH h~U�CJaJmH sH h釩h�~CJaJmH sH h釩h鴟%CJaJmH sH 轈逤闏隒腎臝虸蜪郔酙CLpLqL礛軲N���������������L$d�E苺搏舊a$gd�� $d�a$gd�� $d�a$gdQ $d�a$gd~U�$勁d�`勁a$gdQF€F咶滷腇袴諪鉌G GG"G#GMG`GoGG狦疓糋紾罣翯螱蠫PHRHVHiHjHoHpHsH翳糍少官瀻炠炠炠官官炠俽偑f俽俉�hiDCh5x5CJaJmH sH h碏CJaJmH sH h�'h�'6丆JaJmH sH h�'CJaJmH sH h�'hiDC6丆JaJmH sH hiDCCJaJmH sH hiDChiDCCJaJmH sH hiDCh�&�6丆JaJmH sH hiDCh奧6丆JaJmH sH hiDCh�&�CJaJmH sH h�&�CJaJmH sH h�&�CJaJmH sH "sH艸荋鍴(I)I*I7I�mH sH h釩h泇G6乵H sH h釩h婼+mH sH h鑍FmH sH h釩h赱@mH sH h釩h"J mH sH h釩h竀.mH sH h釩h泇GmH sH h釩h^7�H*mH sH h釩h^7�mH sH h%�mH sH h%�h%�H*mH sH CLDL[L\L]L^L_LoLpLqLxLyL塋↙臠芁蚅螸MM'MKMPMtM凪孧慚濵碝礛禡蚆蜯箅筵腆墓蹦ツ潵潙潵潙潐亯乽乽亯雐aih1N�mH sH jh1N�UmH sH h碏h碏6乵H sH h碏mH sH h��mH sH h�1�h�1�H*mH sH h�1�mH sH h�1�h�1�H*mH sH h4.�mH sH h��hpz�mH sH h��mH sH jjh1w�h1w�UmH sH jh1w�UmHnHtHuh1w�mH sH jh1w�UmH sH "蜯螹蠱袽襇躆軲轒鮉鯩鱉鳰鵐鸐N㎞狽琋誑譔豊酦鐽疳胀沤暴睓姳团倆rzfz俕SHh釩h�/�mH sH h釩h婼+mH sH h0�mH sH h �h �H*mH sH h}mH sH h �mH sH h恷(mH sH j�h4.�h4.�UmH sH jh4.�UmHnHtHuh4.�mH sH jh4.�UmH sH h!mH sH h/hNmH sH ,歩焛爄眎舏鋓鷌黫TjUjVjWj€j乯俲峧廽渏舑蒵襧謏踛靔飆 k"k(k)kBkpkqkvk宬磌秌舓蹴屙谝谝谝事妒槷槓垚榼r}r}g_grgrgh�:�mH sH h釩h h�mH sH h釩ho�mH sH h釩h睰mH sH hP5pmH sH h[I�mH sH h釩hVmH sH h釩hr8mH sH h 6�mH sH hk,hk,5乵H sH h��mH sH hk,mH sH h秡�mH sH h釩h秡�mH sH h䅟�mH sH h▁�mH sH hiDCh▁�mH sH %舓輐阫雓 l llll*l9l:l;lHlJl璴筶緇莑趌鑜駆騦mmmmLm[m俶僲噈沵鴐鷐nn蹴庾献强欠7菢悩悩悈榶樓樓qi恑恑^�h釩h�+�mH sH h鉵;mH sH h蚟�mH sH h僣h5g�6乵H sH h僣hNm�mH sH hNm�mH sH h僣h5g�mH sH h}mH sH hNm�h[H9H*mH sH h[H9mH sH h5g�mH sH hJ�mH sH h�:�mH sH h釩h h�mH sH h釩h砆�mH sH h砆�mH sH h釩h5]3mH sH $n n)n8np?p@pGp辮鋚}q眖瞦硄莙閝 rr-r9r噐妑抮瑀籸醨顁飏ss s5s蹰踽炙栏櫢檻笝笝瓑伃y璹f璣V^hNm�mH sH h^=mH sH h釩h砆�mH sH h砆�mH sH h0W mH sH h� (mH sH h��mH sH h��mH sH h� mH sH h釩h裍�6乵H sH h釩h裍�mH sH h裍�mH sH h釩h鏑ImH sH h釩h'0<�mH sH h釩h�#�mH sH hWtLmH sH h釩h�#6乵H sH h釩h�6�mH sH  5sCsGs\sasjs抯瑂祍蛃髎鹲tttatmt媡攖飔餿魌鮰ubucuvu塽蘵鄒陁鮱鵸v/vIvKvUvZvbvmv塿巚搗�vw桫瘌瘌桫疖瘌蕴奶募醇醇暋瑣瑣瑓h�$mH sH h 6�mH sH h釩h��6乵H sH h釩h��mH sH h��mH sH h[H9mH sH h;�mH sH h^Q�mH sH h�#mH sH h蝵�mH sH h釺@h釺@6乵H sH hNm�mH sH h釺@mH sH h �mH sH 0w w wwwww:wCw蟱鐆苮莤藊蟲觴讀豿輝鋢騲魓鴛 yy=ybycydy抷焬珁瓂皔膟苰鎦鑩蹶廒沂沂铱曳瑬嫛嫛€umeumueu嫛uhZ�mH sH h鑍FmH sH hZ�hZ�mH sH hZ�h'i�mH sH hZ�h�2RmH sH hZ�hk"�mH sH hZ�h裍�mH sH hZ�h/ppmH sH h/ppmH sH h釩h��mH sH h 6�mH sH h��mH sH h�$mH sH h-�mH sH h-�h-�mH sH h-�h�$mH sH &鑩閥AzDzZz]z|z}z~z厇噝墇妟搝榸苲葄襷觶雤鼁{{9{:{倇儃剓厈坽墈憑抺晎檣舺苳莧z|▅桊噼嘭腥栏壤雀雀雀壤刃劝啜铚摐搳搳溹倆oh釩h餥xmH sH h餥xmH sH h�mH sH hV^$5乵H sH h;�5乵H sH h;�h;�5乵H sH hXmH sH hdlmH sH h'i�mH sH h 6�mH sH h裍�mH sH h蚆�mH sH h�*mH sH h;�mH sH h}mH sH h�2RmH sH h▁�mH sH )▅畖瘄皘祙羭聕鄚鵿}鈣銄韢題鮹鼄9~B~[~f~{~﹡獈珇#':��� €€M€U€寑梹箬噼剜剜匦刃佬感皑牳牳袠悩悩坾埲t萮壤hca�h7<�6乵H sH h=^�mH sH h�4h�46乵H sH h�4mH sH hca�mH sH hmH sH hhtCmH sH h[H9mH sH h錟mH sH h!�mH sH h�mH sH h7<�mH sH hD�mH sH h��mH sH h餥xmH sH h釩h餥xmH sH h釩h餥x6乵H sH %莧銄J�蹅O�P�[�\�檲殘泩湀瓐畧<�=�H�I������������������ $d�a$gds$d�7$8$H$a$gdQ $d�a$gd'i� $d�a$gdQ$勑d�`勑a$gd�2R$勑d�`勑a$gd質"$勑d�`勑a$gd7<� $d�a$gd;�梹竴膧蛝鋩鴢麁H�I�S�n�拋渷爜硜磥箒�(�D�F�`�f�l�m�s�y�}�~�€�亗秱簜賯蹅鋫雮桊囵剜腥栏栏袄辅笭晧晧晧暊溉亂亂qeh�(4h�(46乵H sH h�mH sH h質"mH sH h傽jmH sH h釩h[<�6乵H sH h釩h[<�mH sH h[<�mH sH hm+�mH sH h��mH sH h��mH sH hV^$mH sH hZG�mH sH h7<�mH sH h2mH sH h�mH sH h=^�mH sH h#mH sH hmmH sH $雮韨.�0�8�=�O�T�Z�[�]�y�麅 �M�N�O�P�Z�[�\�]�渼瀯▌簞�(�6�^�畢羺 �庾俗俗忭励疙疙檷倆ogogo_W_o_oh砆�mH sH h蚆�mH sH h��mH sH h釩h9vmH sH h�*�mH sH h釩h�~mH sH h釩h�~5乵H sH h�.Z5乵H sH h釩h�2RmH sH h沠hk,mH sH h質"mH sH h沠h�(4mH sH h沠h沠6乵H sH h沠h沠mH sH h沠h��mH sH h沠hdlmH sH h�(4mH sH ! � �|�噯獑珕瑔秵箚簡脝詥諉��3�s�亣绹膰鄧韲���槇檲殘泩湀瓐菈鐗;�=�屙谝清垮欠乾扦湦筏湦敜斍寗ymbZ宐h 6�mH sH h釩h�~mH sH h釩h�~5乵H sH h釩hXmH sH hXmH sH h€^NmH sH h_^€mH sH h砆�mH sH h蚆�mH sH h釩h'i�mH sH h'i�mH sH h▁�mH sH h釩h�mH sH h�mH sH h�h�mH sH h��mH sH h釩h9vmH sH h��mH sH "=�G�H�I�V�v�煀爦珚穵粖繆�*�9�:�;�c�磱葖讒聦膶葘蜾峙撑洠洠洀洠剗rdrYJ>h釩hio$H*mH sH h釩hio$OJQJmH sH h釩hio$mH sH h釩hE]�6乚乵H sH h釩hE]�mH sH  h塝�hE]�h釩h#mH sH h �h �6乵H sH h �mH sH h#mH sH hsmH sH #h釩hs6丳JmH nHsH tH h釩hsPJmH nHsH tHh釩hio$5乗乵H sH h釩hiq5乗乵H sH h釩h�~5乗乵H sH I�煀爦:�;�謰讒<�>�帋弾H�I�邚鄰��螒蠎_�`�魭鯍瓝畵2�3���������������������������$d�7$8$H$a$gd蘊�$d�7$8$H$a$gds葘驅魧鴮 �<�>�濒��赌�帋弾蓭荡药&�(�9�<�>�G�H�I�n�缽袕蹰踣跣疟E袠悩儁ky]y楿N魾h釩hXA�6乵H sH  h塝�hio$h鏎�mH sH h鏎�h鏎�5丳JnHtHh鏎�h鏎�6丳JnHtHh鏎�PJnHtHh鏎�h鏎�PJnHtHh�mH sH h鏎�h鏎�mH sH h釩hX~M6乚乵H sH &h釩hX~M6丳J\乵H nHsH tHh釩hX~MmH sH h釩h�*mH sH h釩hio$6乚乵H sH h釩hio$H*mH sH h釩hio$mH sH 袕褟覐邚鄰鷲����笐繎螒蠎H�Q�R�^�`�垝迴鋻魭鯍@�A�T�t�u�寭煋瓝蹒苎苊畿衍畿衍辩堠弰yncn躓茜�h釩hio$H*mH sH h芺#h�?LmHsHh芺#hio$mHsHh塝�h�*mHsHh塝�h蘊�mHsHh塝�h蘊�6乵HsH hpSh蘊� h塝�h蘊�h蘊�mH sH #h釩hXA�6丳JmH nHsH tHh釩hXA�6乚乵H sH h釩h�*mH sH h釩hio$mH sH h釩hio$6乚乵H sH h釩hXA�mH sH 瓝艙� �&�(�+�2�3�螖諗鈹銛�稌蕰跁蹠��a�e�f�r�s�t�儢厲稏窎簴髺蹶蹀跻跚籍记帨菧啘巟巟帨pe唀Wh�.h�.PJ\乶HtHh�.hGmH sH h�.mH sH h釩hXA�6乚乵H sH hWtLmH sH h釩hio$6乚乵H sH h釩hio$mH sH  h塝�hio$h釩hX~M6乚乵H sH h釩hX~MmH sH h釩h�*mH sH h釩h�?L5乵H sH h釩h�?L6乵H sH h釩hsmH sH h釩h�?LmH sH 3�鈹銛跁蹠剸厲€�仐4�5�+�,�詸諜?�@�鷼麣6�7�螠蠝������������������������$d�7$8$H$a$gdV�$d�7$8$H$a$gd�.$d�7$8$H$a$gds髺魱,�-�[�]�p�u�y�z�~��€�麠 ����2�4�5�����*�箦箦谔谀谀诩川爴唟ph]OAO]h釩hXA�6乚乵H sH h釩hio$6乚乵H sH h釩hio$mH sH h躳.mH sH hZ�h繾�mH sH hZ�hZ�B*ph+2DhZ�hZ�PJnHtHhGB�hZ�PJnHtHh%DymH sH h繾�h繾�6乵H sH h繾�mH sH hGmH sH h�.mH sH h�.hG6乚乵H sH h�.hGmH sH h�.h�.PJ\乶HtHh�.h�.PJnHtH*�2�3�A�B�Q�R�c�d�礄笝箼艡茩菣詸諜鄼�� �&�7�=�>�[�_�謿貧霘鶜麣蹶蹶蹶蹶踯诬诬趺矤彶彶彶剆bsPs�#h釩h]w�6丳JmH nHsH tH h釩h衟�PJmH nHsH tH h釩h]w�PJmH nHsH tHh釩h]w�mH sH  h釩h禛�PJmH nHsH tH#h釩hs6丳JmH nHsH tH h釩hsPJmH nHsH tHh釩hsmH sH h釩hMAk6乚乵H sH h釩hV�6乚乵H sH h釩hMAkmH sH h釩hV�mH sH 麣倹啗嚊摏敍暃�&�6�7�窚翜螠蠝L�d�e�f�u�w�}�~�啙櫇煗矟碀紳貪贊軡逎釢鉂鍧鐫铦蹒夔夔跷蹒跷蹒跷趼风醑厪厪w厪厪厪卨h釩hTmH sH hThT6丳JnHtHhTPJnHtHhThTPJnHtHhW!�mH sH hThTmH sH hTmH sH h釩hXA�mH sH h釩hXA�6乵H sH h釩h�*mH sH h釩hXA�6乚乵H sH h釩hio$6乚乵H sH h釩hio$mH sH '蠝v�w�鐫铦|�}�;�<�"�#�谞貭浮埂悽憿/�0�猓悖��������������������$d�7$8$H$a$gdGB�$d�7$8$H$a$gd�w$d�7$8$H$a$gds$d�7$8$H$a$gdT铦餄f�m�{�|��-�:�<�嚐鐭麩 �!�"�#�碃紶綘艩茽菭谞貭ⅰ浮唔陨簧敞潖倄mf磉X遆唔M磉�h釩h�*mH sH h釩hXA�6乚乵H sH  hw�h�whGB�hGB�mH sH hGB�PJnHtHhGB�hGB�PJnHtHhGB�h�!�6乚乵H sH hGB�h�!�B*phhGB�hw�B*phhGB�mH sH h釩h�w6乚乵H sH h釩h�wmH sH h釩h�HmH sH h釩hio$6乚乵H sH h釩hio$mH sH hb�mH sH 浮1�2�z�仮悽憿 �"�#�/�0�;�溃眨郑猓悖-�N�P�W�e�g���&�'�P�蹰踣跣懦ヅ袣艓ヅ絮凊埘{wpweZh釩h]w�mH sH h,0�h,0�mH sH  h,0�6乚�h,0�h,0�mH sH h釩h衟�mH sH h釩h刾�6乵H sH h釩h刾�mH sH h釩hio$6乚乵H sH #h釩hXA�6丳JmH nHsH tHh釩hio$mH sH h釩h�*mH sH h釩hE]�6乚乵H sH h釩hE]�H*mH sH h釩hE]�mH sH 悖f�g�'�(�去丧�€�哀S�T�0�1�丞侃惇應=�>���������������������$d�7$8$H$a$gd�w$d�7$8$H$a$gdV�$d�7$8$H$a$gds$d�7$8$H$a$gd]w�$d�7$8$H$a$gd,0�P�饱偿互钎丧^�q��€�枾牕哀:�B�R�T��"�/�0�1�咯嫂砖v�镛剔炼ǘ潚剴潚剴|xqxf[定禤h釩h�wmH sH h釩hV�mH sH h,0�h,0�mH sH  h,0�6乚�h,0�h,0�mH sH h釩hio$6乚乵H sH h釩hio$mH sH h釩h�*mH sH h釩hX~M6乚乵H sH h釩hX~MmH sH h釩h]w�mH sH #h釩h]w�6丳JmH nHsH tH h釩h]w�PJmH nHsH tH h釩h衟�PJmH nHsH tHv�偑應�.�/�=�>�かカ � � ��铂浆爽~�敪…蜱苁架宝殾寏寏對sesZLZDh�mH sH h釩h4r46乚乵H sH h釩h4r4mH sH h釩hV�6乚乵H sH h釩hV�mH sH h釩hXA�6乚乵H sH h釩hio$6乚乵H sH h釩hio$H*mH sH h釩hio$mH sH h釩h�*mH sH h釩hE]�6乚乵H sH #h釩hE]�6丳JmH nHsH tHh釩hE]�mH sH h釩h�wmH sH h釩h�w6乚乵H sH >���爽态-猱惝くク弹动��������rrjjd�gdQ$d�7$8$H$a$gd禛�$d�7$8$H$a$gdsP$d�7$8$E苺 撆H$a$gd�$d�7$8$H$a$gd4r4$d�7$8$H$a$gdV� -喘涵�钱耶债桩喈岙猱惝儻柉/くΟН动汞蹶咴枪谦恰詵媫媟g[OAh釩hiq5乗乵H sH h釩h�~5乵H sH h釩h禛�5乵H sH h釩h禛�mH sH h釩h�~mH sH h釩hio$6乚乵H sH h釩hio$mH sH h釩h �mH sH h�PJnHtHh�h�5丳JnHtHh�h�6丳JnHtHh�h�PJnHtHh�h�mH sH h�h�1�mH sH h�h �mH sH h釩h�mH sH 汞集警刊��6�8�:�<�>�B�D�R�T�Z�\�b�f�€�偘埌姲惏敯柊贪姘鸢虬蹒苎坪漂く茦寑q芿€疺袺篕�h釩h塦�mH sH h釩hT(PCJ aJ mH sH h奧h奧6乵H sH h釩hT(PCJaJmH sH h釩h塦�6乵H sH h釩h扴E6乵H sH h釩h顲86乵H sH h釩hk�mH sH h釩hT(PmH sH hHp�hHp�6乵H sH h釩h扴EmH sH h釩h�9mH sH h釩hiqmH sH h釩hiq5乗乵H sH h昩�5乗乵H sH 虬��.�B�V�Z�`�f�埍柋副 ��@�A�G�H�Q�R�Y�^�k�櫜煵ゲΣ疾炔喜硬撞诓宀箬荑哑话互毣セ弮弮弚k卉廲弮徿徎盎盎h奧mH sH h珼"h扴E6乵H sH h珼"h顲86乵H sH h珼"h�9H*mH sH h珼"h�9mH sH h珼"h塦�mH sH h珼"hK%�mH sH h珼"h珼"mH sH h珼"h扴EmH sH h釩h扴EmH sH h釩h6�mH sH h奧h奧6乵H sH h釩h塦�mH sH h釩h塦�6乵H sH #宀椴�� � �=�>�z�偝兂姵彸湷С┏鸪9�:�;�B�D�J�V�W�Y�Z�]�_�a�e�h�i�s�€�伌懘挻蹶蹶哧匀越饱綑皆幵幵眰詗詭詌dl詃匀詸傇�h��mH sH h珼"h��mH sH h珼"hocbmH sH h珼"h ?皞. 捌A!�"�#悹$悹%�芭芭 惸�D猩陏�寕�K� i.p.hartley@stir.ac.uk嗌陏�寕�K� <�mailto:i.p.hartley@stir.ac.uk�D猩陏�寕�K� d.w.hopkins@scri.ac.uk嗌陏�寕�K� <�mailto:d.w.hopkins@scri.ac.uk�D猩陏�寕�K� M.Garnett@nercrcl.gla.ac.uk嗌陏�寕�K� Fmailto:M.Garnett@nercrcl.gla.ac.uk�D猩陏�寕�K� M.Sommerkorn@macaulay.ac.uk嗌陏�寕�K� Fmailto:M.Sommerkorn@macaulay.ac.uk�D猩陏�寕�K� philip.wookey@stir.ac.uk嗌陏�寕�K� @mailto:philip.wookey@stir.ac.uk�D猩陏�寕�K� i.p.hartley@stir.ac.uk嗌陏�寕�K� <�mailto:i.p.hartley@stir.ac.uk�Dd����餌� � 3 �@@���"�?�€�Dd����餌� � 3 �@@���"�?�€�Dd����餌� � 3 �@@���"�?�€�;Dd a%�?:9�0� � # � A��€2�;n 鴌�烚�p��:^X`!鹳:n 鴌�烚�p8�d,岸\帪�:䎬谕�|睁菞Kz项]+ M妭T�( R垐D�(*]�"鳺@EE�OD|" �薙@惍蕴Lu&$儋$磀7 d瞎{Z檲熛氝�3;s鬓s�9s風GっQq頳�#諵輆�*>1l铑�7Z*殹峌癲匄鳼ǎ�#餩堷�徕o�螡;'�1鈕蛫!繸谴>x圏/莱 徇,q4�,� 鳘$>y灌� %85�P�1�5缁tВ租撱鷭O諉鮆xv濿`�劼飐8~.鉱砑苍�+<宗y鮅(<髿�,<宗y嬷y5.Q娇t?c醵?^;粻膥裎諒穭邚纊蟲霂 幩^C皁*:� ):*����+幷u8厇d鄫/ �魻毛�?逼Ccw:簣縨胚眃k≒m/X聴;踦2B%歅渤�,<鄞鬔呇浒喢/Y�%))舼X诧v~鱟u G屜UmWU| 薭Za/棳K売JX�.v糱W3砫W�-齠x�穨[,E璠P歰飙[U煼石磂'畊VY枬8麉�9{wfY枬笟佶iS2�秮簫跂扇唑�?t�?2j叧5:谥鑘玽m諑j:讦Γ-蹆秎趜gw纟鐆5駅Uw蜡u醚#呯侔�?�7蝖�8F滋ゥ唯�5sF�舞甼鎸謝g约训oU藴R鴯�^蔌问<\||w閩鯾b秝{H@%欟 唣棛Pg�恛榡螌≒��F洆c� 骛鴢ry桜�!�;.1爊鞫u�-2=禁A澫jh)痟傎舰5矢�0>领讎姵蘔1聕T� 4�K坓摊€@刨沔NB�6�g萏\BO3 Pqv朴�g<齹@刨 羡�8釞 *�2=� 戦Y*�<��*我<脙D�'�8*� O=B烔@犫旄�!巤z亰� 汐勅餖g^蟇勷z伿忘E坙线�8儿圫!Ny麫犫,荢="H鋢j€C艡哂�~�@犫3��1@犫蘟~J�9TV-�Ak幡瑓�"�&gF袣��59K�囟n垽m肫Hl[臲�-!獦�亰硓鎌B�3�亰硸�刪i~*�:�?� �8雐陝鑙@犫聴艵Q�>6蛸Lf�e6g撎~剺d�g餂S 窬��8�=�C�[g蛷 袮lT淯6�� ì夯€'臯€@刨V蟇勜"�*尉�,!膢� Pq6蕹�/壄丣�Aq鍸�%D⒇ ―o悥O堛i@犫旆� 袮�b+@犫lvZ!f壄亰翅i褎&�*�:づ⒔� �8珨� q池 �8;y麱B�[�傗l笋*勜,�*捂疦埾臯€@刨K莐b溫 堬x=B<(禶�姵Z�庵銔€@%鷾�; �/禶�姵=�- 盵lT渳撢�嬇V€@刨k╉19�=�8霛趬侥V€@臲迷畡h �*温S!D権倿 g)FOB[gk嵡A齚�%霬�皑8沠糓坵崺@犫lⅠ!╓屽剗臱,*酇 �� T湇1*��1FDC―f�#�(�>―,产�5荑础蒯贵翱缚蚕辩6豿�儘堾犫�9�+叠蹿�驳皑实勮肠濒晆鲍櫛舄瞓癃瞼虫聘!帉骋�!嶦刨驠摆叠�'鮅@犫L�B卓g囚%��霭� XT�旋�8犵亰3U瘧$T�&dSPq禵€瓳�龂>�{舯@牪坬R�+聗&傧$暴瘰$䲠DV"[賿秆I墰淗擡�礧繌皗鮲愧睯q!R簟@�q!! }&―辑�B圠齏 P夬R7懌�亰硈z� U�+葹� 藚J�zsB溡[亰硉�?!阴@犫鞇�!轱亰硙.Zv+]Xv+佖礛O&�6�皑8郅囼 盜儗*沃雡b澽T滮�?F坃鮚@牪願L"�}2莧$搧鳴�j會5aW閶丒刨/"叻[~遪 6鑩勜犵丣DgzMw愗 筗T滮瓀%�.鼳 PY緿i硽綂d5菤� 泩JDI�>B|n6勌*螙毥H頽嫻T滍抷究M暟浱C刨:� �=[m�*尉7S竦�rR�8霨睼煒k丂刨,驢F�4;醍y鋦PY%餖8��廀俖�b剎芗r-�8{詜瀌c�3�丣D_fzfa� 麥�r�8沴%Y悷蛵@�5留"眼 #5P溳題l鱶g��;#TP"B5�b姽T�=i~E驫+�0�统��=�丣��?q.c―/T$%#Tb鼦Ac�<缟8xw�8x紝a撬鲠t面萨3G茻;英�~寣侨乇k� �8y�―{?^�#�7g潖7%Dfj+ P _欄柶俩]0%忄詎勅0z丣鬹2Zo紙雪坓H蓉vT渳a��"�矡赂g3尡剎QD g峔Bt4丵4*蝂乐L屵镠pO,��麗�Kc憺q嬼勓�阏8寴7'蓂s�# 55嘠#*kt帲詆屪跱�0凵f�"#Lя屌Pqb� �3b孏2膪!埃鞷� c犕�〔�s碛�丁�皑j*!V丣�崗 �4u!― 楘5!~L] *洤�!D筱€@臲裤� 宾鴁 Pqv涓J坽襱 P塤"-�喀��� qoz(尨P�((=妼胖セ丂%FO�7骗@�u#�6Bl谈T測3Z偔^聉�< vT"Lp� 頩'fp�:駷蟸拜mF搼V{�2尨PY}蹶煿蝎那�&巴7�鯷�宊P夞捹l橌蒟g9歙�6�"勰�*挝歖�Q�;�%�.l�,2媴廾畷夡鑛eV椂�*鏭6憑佻.moU荚J^x;硧 WLPkT!U砨EG鲓焬gW纪�(>魣知� 1Z炢ハ(�=x�@&庻d螒6Ghqn�n3鏗�#魊鏢也�.V+偉�=D�&劸鄛'�汮#8觓埛�浸0歹 /蝩0戨`"琢�ni� 拒L [n赟临c紉莙寃嫶5�,屋.風辬n懚戹桭~Do浫5_跿�/+絰噋シ猃� 譏轎靌鰰� Q鰲茖�納Ⅵ�姀=�滜友;茤絆K蹮雅鬼涠{灃�?m/崣邀亭��#鈉Oig>绚产闭3蚕谄��&测悰銲敹�1鰲贵粯骋�7肠搁<癖�4偝筷x1g_芹M赩�琬鏏�瀗叶2筑覙晃�壅l->鰯Fp\�3迲叶/�8子D9R邛刨_ 鈫{�8熧O|�)嵿,纼^尵z飸儿衽笿&r曁{~箭�1<緥wy�>髒癖񗿅!s絰_ �;A�&�樔50'H哿鸎cIBof偳$>鰯Fp6hH&F�!�qbq.蹹.莒 m��/峲壿絢歁徘炓螆媤;抉芀踙鐈�)9Sr鎕パ�9摞�3膡61膋W堇Y粒絰e碬u崼8鞅#�>6鄹�/�Wwo7譇s秤�}c&蕖�1驥i嬧殴L�>0繑�(ni靪-艮�x?t5癌ng�/赡{?K2GH�^溮f"吠!m{省4骟ㄌc|)癖�4�驉1� Y欥�-ロ3wq箠迻姻欅�>猃铸姺/崲O}坮\.S曹�s>u綐螬氕.m� r[=萴鮐椂k!7T蠝]q緳(>鲈$穳9�2绯@鎩槝 roz恵�3G谑'7瓷�z忶N�=6晢瞟'�b蝕斕鶎217鋤{愲鞟rC�=#耤檀�黄j2�3W鎩媸溝\sCA�r/x禜[哣{贒�7譊苑�4λ淥G��(sCen(萯�蟒j_i+熫衹鏋║鎯鈉Oi�5鶣~�(.T]i{?�87Frc$7Fp鰲F熻∑艰闷 鈉OiL40敦� 豣鉯i�譣r�%纵(烲Y##)�#鈉Oi�00禤蝨]h$Jf蕚\ 傻怽 2e諏7cf癖�4506E蝞漛t�6虜筳挮&筳F鵧蔅� �屩鈉Oi郘W[.缂.7FJ劬糕\�5慭2e5 #頲S�{C蜸x酶G�0S�*K�*鍝)玥,�筛]|�)崳:f� 虁%� 3eA頖9遇G}偞昈�e {Jc穾癏3`慒i肔Y慃T�'鵗� m鍝)洟疢綦M徘炓蕾�.�'�玳褚6赮淸&筫抂O︗M� g瀪61夕依y浦 z虁�40忠h�*蝝𐽿枞m兴'S禱镦猠lv植━l�1b`,镍R�0S�>恠�?衑/烲佾鶰毪Mu�3`啘%m�#� 3eAn婁n奮>櫜玺肠椯�<欇蕮侪<� r%譗rm蛡梳☉龜瘿M屦吿k9S1LM�6�蛊2�誜婵蹥� 攦n�酉�cO9�%3Z#dFk勌h崘櫙 W�#W爓�6;3_乺ol�=シ壍;绲R娌V蔦质 浼H畞�貧� 斆�仔�gO9 慪�2嫷Bf盫萳W惈!�挮ak�+P藢羼u峼聆斆i櫩zP婀攜�e�+韧晊2�5字�8[濤=}6]v,膇�8k撦槵HO蠚*�6f�'o綈 1*魏f5$s2�曫€欉庹蘃�Pq�'�捕<4髆 Pqv幕�蛹�0禙刨 o=叉苠}3焔�&Y�7q豉●奝珟3o#+瞳檕亰吵灟 比S苩�8涒〤謼7鸺嗠@q泫�?fT勒軤8� �YE�*c�8�)鉑芭f|焁糔_���<�煍妸绸�&�-蹃@艡?� 溺�5�b戾�W�? P墤R轑B|懛T溄掔!D嵓蹱帲繃�=┿ 亰硥~鷶峓� �8s�雓�g搣鲹VP埙6�8c均刋攞T溄炿#D蒈f蠳Pq掻i'媠�暔[9魤q风鐯犫,,�!枩i- go濋IZR�3丣�"g�b匍 Pq6鮰(iI N访HgQ 膚�>g餅ZI團丣磽S绚8�鉓P溄wr!殰�T溑漒K垥'r丂%鈶墹5辻�碬T�%�D踜鯳8_g3�#D踌矦犫虣}=i勋硓@隕%趞�B慈Z *为g齖陽顄訓n罕nl�7m�7秚�啗遏 7遏 7遏t7m殚nl殚nl閕n谝徎饱wcK?瞀-=諐-=焆郞u訓n副�nl閱浂t輱-]wcK纵触scK?嫫杶蘉[鶴|V?(u訓~�4偛Z�7m閲葚�槐�v訓~葝-龕[�!7m�葚�罕ェ竔KOqcKOqcK?唳-齹[�w濱v訓烄茤烄茤iKW葚襏7秚誐[衡茤饱+n谝撥匾撥匾撥触飛cK唢茤具M[�>7遏}nl辂艽ワucK唠茤咀M[�7遏=nl閧艽ワvcK唔茤聚M[�.7遏]nl榛艽�砥桛�[n谝�rcK� 灥�k3w亰硻�;q坟傜搥忪禾韯惠峯k仡僻Fl#D+颲 Pqv働鋣/� PY��Tb�"/{�gs� m=泙@臲%∪3c26亰砄�"�束T淯懚鏕玤��Y 晥璩h[怂脉妸唱俅蚈菷蟼姵喜﹚騟�D%酰/滰_孞斆 �9'2丂%黍d6!茷< *駕�皑旎�4巟测.趚.贔6聫董鵫蹥镑鍒种眤议驳铆髄惫图�89'辫贵童�3箩�净媖鎚�銰啑頼�办=驰顙峬/讂&鄮耻茱葆?�1驳玑踰炈+镑鋈驳馊皑颻�<邇�3逄{劏敁 *螝迥惢�r瀰�8洐�.!抮瘕嚚8;旵呷pW�3p暔8{$w*!f�g rs@-蕧 鳓��5*酳r�"难苊@�qvn�7骐鳓Qq栢汢�:緝鴇SP�5鰠�;削麨俖 g=|7凒鄾罖q��;聕屲a飡�0b�遜BL駃@犫靘焹�?炨{� �8G遪5拽郳bP渳�;K圗綹P鸓q赌� 緖厉'棺鼉o?豎q龀/�踻=a�&*蝪鵡&O�?廑 *我|~B鴟輆~#*挝撶咔鹷亰畴劏��,�8痘�%og%�.漺�c蜮狚嵣�7蠈蒶Y湜鐲n�箟�&憲:�,慬Wz�3回�.糗瞙箳5.r吙u銼䲠埀坱Nd�#芢6�8鳡瘜藽�櫡[�*�鐬�!鲃o反U姽荠敶琤娬奰i銬褡幑蘅)鷝汮#豞t虶徱5�'i �/�=$=螩緹�-$撖�8�柯�m� 汮#豨+�7� +X(mfbq顆r葵J洐hi鼨�3/7皴紡那炓捌 馂慄飌鎥�4i鬯媠觞逫�8M邛r鸎�;龴�!�%o掵/崲��楏q%艄g袟滞E_Z7}i輁閟%峰r[N!峰Ty鶿z?'f^/>�:菜檭鲈!}关?z� 覇�6冉v棺戊�6;絤�v缰�濢g�=鍊�5�#y?I 莝愩9?I洕~6P燏忏[嫵�VsC瞎2o〈 r咤 鱙蜝i秤�梳�/7駏咔夦斆]~魴�(}隓閇儨79o�4i秤�梳Y�!顭�/鏤/杇R鳗荪_�,狲 飘朁M商鹗劣⑩B齌刾G"釒D饩HJ虝腬Il&D 圿Qq�姠腷I,柲�"具旹� �跡�#�8"墄胡�?W?€釨�*BdI"K�(1.塹 H,$Du?螘F艆�=�S憳�3↓+�1N$b淗� 眊 �@犫B齎劯蓞腗.$⒛|I虠膸"D嶥�5�=�;賘旹$!顁#q�墽輸鳨縃"]�2K<3/舊y|踹N�%死�$遅一謠�DXw<]遵N 瞀梲f蝩%巩⑶E�'书飹鐆}Y晎)產阳步�桇^镥昱崊踱铘歛V �>p� G�=f岳獜9�:茒OWG瘵%�廣�(佑G5饳1O|﹃�U7(O堅#輤@刨�#顸憐@犫戧凥; *�6>K<枢�:�T渦8�"阈: Pq恶�*B =4T滮胄噭0� *牺<8���g�v%DfJS}傗lK蕀剎!�亰�.)釀�>缚俫颁刨�骋夛耻�=妸钞词#纳浏赌蔼刨庝箘濣:�8霒<�У~@犫�/�'!苆瓈@刨肸cB洙7亰砞jpR袎^a�铰7N�~v塣a綋z�=N� {滆4'� 'z�铰I'� �7⒉糂磱z吺.� 昡�j酣W赣區酦z厈\�+tu桕B軪铰@|s'(�+ uQ� 铰+.� o辅W橀B�0燓νuQ詤^a� 铰J� ]�6盒+lwQ瘣傮嘆Y^AwQ痯茀^釋 紹亱z�8巀!帲Wps�jq� �8z咜渮呏紹k巀��'G摚Wx扴瘈�8Cey叡渮叿8z叿8z咓罺啭c�+歡{GY-梁羅/韭3苍�0痾協弪^7-J涣?皀篔瘺nx广]狷�曬猠紐簈療屪OW穖齮�`齮�b栋8竭瞣6�>q噇Z?疆O镙}s,瑹鎃粇鷸}踐鋓旳橹O珥�廂�G[6�3邨峅栠焵而凑鏷玙蛛椷鷌甾N侕訊騥i=皊锍侕覯髗#皛k砑緋�:x~惦�-�ㄛq噁�2^?}k療na愈轷e紐簐療净屪O�Q齐щ栧挰fe要d�氙混kR~氙E壾V栯斩.挖童�!W炳zSY�;甾�4氙#�剶蔸k馣�+�5棱j�-�鄧SB甹 疰2�-跂骒W�4跪踝㈧�(悴刊4g啭郩桚�2.鹶肒6国踝�s\╋瞣�mo冘o�$磚JB跦m#U磢拰禣捬�>尘随�?栖贰嫐指麱雪调噯幘罡蝉淀?袄+B劋纘5荆�5耻镑-罢<痥$潍�5V^铴鄖暏�.讍g髬嶎痸]镼-瞀┥p7MM>幎�殴 � � 祣D芍89日V*觰�遠�#蝘I徵4{Vt$j#� 冣Bu暥Y殴q*r阍6++:._V_-72BQ鏕宰趭�=ケO] w漡jK岙驦m韸,蝅�"w�:U趘E赺K#绌"Oǒ垙=�1Z�,Tm 砅档硪v]Lq�7惯旐襳]岧}廧-f胡{魌汮惆陘��5X�%洽碇糕躖钩 rg昜沆/ G茏j酶醑�汮c�:f)V譌�*栮ZWi�_淸� 稡�*m斥肆o�7V缜咯�涥F�0鄒�� 鸷2C谠拟\�$溱$蛺65瑶银!耠$=� i婙豐嫆j�彗昛pG鵼匢[Wq.u?r櫞uq賍礬/$鮰mH:丬怲>+胞%悒 �:*ムǎR 嶯傑B9:Y(G' 藆tr�赜摏G4JV马〤o笋砌dolO�*m8. r礤袱�棿穟\(囌邳堔趠6璂_脩�-p藖┮�#� W� W燣�6;G$乺鳸;賅{5覟r垨c岧*�1霁邾 �"A畭嫶慶�6稁E錺��$+雔Z�H�.v蔘萅9 �)G!A顒厹悾�稁B鍚�5孾kO9l掋妽rQ�?6蜀G愛$�涗鴆摥銖@9鋱鼻G陖聆擟5G齌Q鬝gH�<傑猃��?C陟y梳aEO<戶O&.�飞1莔r蘱�s�r瘫B�9V�:�斆<1辢摂�,輷 甦謭]3M:'D龐楏<癢]QMz曖<0甩诱曂ンfL� �.PZP~�.�3ZS溬�5B邶�Q绵I0吃DP〞@MWo咇騮�6╥jP铷瑼渐v鯁��$�/╓粤�&╟b1_> 詪甏X糋9詐� 蜍毩�埃膊jKA=М鯇�TuěT��!8J�ㄇ�,P菡(UYj坎 詎e�P�匼薞�豎q禘9&悭LP?ㄟ昉槂鷭�阦%fóUn品�*礎璗僙礚��錛P_)O乑� 5_ j�2�'驶�>Rf慻#蚔>;*蝔*篑澇�P�+獲将�醵� 鰙[�j姃j瞨 訢%运�訩J(DSc�P汚峆j��45H�訞�Y[6@y歙8氆<� eㄞ蔴P=晧�U迋}U�誐� 獘2Tge ◣�*P頂u狀U躲怀�$|.俴忸R紶�(>P 擯睳+筆q��椵 R �+�4UU�T�>8Je錩爊Ru津$(�2T�2T�2T旘╬e&�錽P攐@滿��?i箹埭蚡G臲N襳P扏e'錗騻蔋蜥S潛 p齳產訐釧N络h駃I吵%鍫7�"�~� #iTV�jD淢厛率崔A�Kk釨5��淢啒兂塟w�D�>�擡��昿6�纹AT屡8x9�韊|b4(蜦C躡崍呙�1萨d橏9��6鯣e� �坛2�q�5z轍庺尪 巹姵賵 � gOBd肶虲鲲a奻T�=�g� 鲠��>�=�9ID鸢寗Pq12��+腄渦裵蛈g�9倏持"穷-饳"jꁭNj'悚{掸叁鱦}#qt遅I祾懺�2抝駬5��6巹姵� 骡� DX重�;磁d�;磑`T� 皂僸Vb01尦[悼葢n政�#〔顂j牚A�&|Di淯椅衱 h9鴰P溳,飧€篞苉咨x峩旽d�!zs1.愀D桥�8.�7.Z;�q升犅!境鈷~Q椥'T�窿�,b╯闤PdP>耻╘鮹谤踹(笔聫��;�灿ㄋ蔼别�+绳驰��?*�2鲍触蹿僄舎1闭舎1鲍鲍绳啰窿ǜ垙0�<琤yP�暍:H\棦V埰�Di詐P暏V礧璄鲞幤$闐cT�訽jkP壅窝_=@幋U� GBe臸=@�鯂:詚u�晋"鞆�"柒� c誣T孶R1V]珇D幋V�巹姵�2汖QF尺C 速r鮓�r��?*."� 爾A斔�7錼�#�/�1/*.b�,|�D繙蛧钘�(0狧t-Ch:A蛠鴺硰!>垛膯d�Yj#�旹4酢寯g菻鶀)咖�$GzO} 巹J袈2枮 �4gS �}d�7訵b0}E揂M唄[舯m�>VD哿齙V俐�8Q�5觡禍氤詪隉d�胀1裯b拈�8澇�1�7咶箼1錰J"+屫煈�摈W9墬頧见�岄焺H^尀!�=掛�榸穼忥�1堳E� 本鑬!�},您渦S麘#uS慞塣�溳�亚B6€硯隂d�庩[�?*朕�4P鰽継舯�燴㎏叁� K F�2_p诽4楖�;e緺┖嬱逿� }(4�<傝Y!� zV5楈魂凖QYD^,企a2濷U2 U珢糀u�埶Q壘r匼勮Y!!zV�=�F祪�t怐�8湽�擪� *QL鯫P嚴8嫇賷櫗垟賷pu:�?\��,L�3B 嬃��V&酖�9e鞆�"V莂產}�v€蔘�8�:$�#漋瓠<―攉暛d偸T鼱< }S廏�(�!悺剚JWA�*旲�9懀JrぃJ]櫻� ��59(�&d諨S$鹝J7�曡卐^e?dSD �亚*Idng;!�"鷁炔Xy紬糦鶆炜Y�}/鋋D� y沃A茪��7鬻x�!$峙c.e詊檻Y�銱珨T8*蝵�9涳e捂;櫝Yδ悓蒖%rǜP樥�r9渳�亚*嵣㥮*M`T�g烠巼硑愩醠嬀桰閸飁%鷁�壘睝�,g(瘨�?�9!TV炵]欑�j毺将效i浚| =�)驞o�<裠e �膊Uf埗Jb;╓!$z\�墳騁溄�#饯d薼R6� �$鷁�0q62LU�#櫍术2遲�$n5rP�旇Y晎叁�*璥T�=璽u該��撌影?*毌z\娅擓�售d�蔜�旹��萩q� 浔D y,�P枒#=爘 GB%z\萾�2]"獏L棃j�=d�麛桨?*雁B.L舾 >�渎8k �0蝂(~r�J炋犪摙�+篠f艢痊X#�*�?5R狝�曡{e蕃咎涊.骹u攷d�:2w咼舾怑瞅nO偤瞙�J隹E�2s� y6蝞€<涜O�慅疭�)颞,b&(d釪� �8殉*?倞UV�#�*kdvo Q�:P� 驿�躺�()d�鍫��f�*(樀;+硋鵌!E瀮曷� 吢�漯D?泟O�?u9紜�8R3#氱z痜屏呏謼钌鱫耿鳋O鞠I9V�謸�楆慎v濿努LVx^齂駾䦅叆��7m@Dd j"G���0� � # � A��€2鸺輮蟍渷鷖�鲲��鏐X`!饜輮蟍渷鷖�鲲n,�U竅U牉H^䎬谕ZklU�;圯�Z陬nJ�+Kv+!勑Z "�$ .R贘踡hMC*BbJ麬麲b€塨4b�#jS J獐鷩G J爼>v硰詛顫;坶钐拶滲棞钨3鳛鬂s�93{�帛  !"#$%&'()*+,-./0123456789:;<�=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€����������������������������������������������������������������������������������������������������'����������+�������������������������Root Entry��������  �F0�#惿�Data �������������鉐WordDocument ��������<€ObjectPool ����牔�#惿0�#惿_1272810525��������J蕇nc蜗禍拺2�牔�#惿愷�#惿Ole ������������PRINT�����v,CompObj������������€��������� ��� ������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ����J蕇nc蜗禍拺2�SPW 9.0 Graph!SigmaPlot Internal Data Stream.7SigmaPlotGraphicObject.8�9瞦�鄥燆鵒h珣+'迟0�����(< HT t € ������LEvidence that soil microbial respiration does no�<�3 7 "  �3�< � �-����- $���-����-� �u�"Arial� 婸�Xwaw 0鮳� f�-��"System� f� &�����茱-. . ��>�"Arial� p�Xwaw 0鮳� f�-- -- ��Y�"Arial� �,�Xwaw 0鮳� f�-- -- ��u�"Arial� ,�Xwaw 0鮳� f�-- -- ��Y�"Arial� 巔�Xwaw 0鮳� f�-- -- �"�� � "Arialb �$�Xwaw 0鮳� f�--��"�� � Symbol� $�Xwaw 0鮳� f�----��n�� � "Arial� �$�Xwaw 0鮳� f�-------- ��Y�"Arial� ,�Xwaw 0鮳� f�-- -- ��u�"Arial� �,�Xwaw 0鮳� f�-- --����-����- $��!�!�--�� �>�"Arial� 仡Xwaw 0鮳� f�--. . ��Y�"Arial�  �Xwaw 0鮳� f�--. .� -!痄!�-�� -镲"!�"镲�!疝-� ��>�"Arial� 擛�Xwaw 0鮳� f�-- --. - 2 犷�High-low�+llA+l�-. -- --. - 2 犷� Constant high�lla6ll66l+ll-.� -�-� --��"�� � Symbol�  �Xwaw 0鮳� f�----��n�� � "Arial� � �Xwaw 0鮳� f�--------. --��"�� � "Arial� 搭Xwaw 0鮳� f�- "2 �1Respiration rate (�{o{1J{>1{{>J{>{>J-��"�� � Symbol� 朙�Xwaw 0鮳� f�--��"�� � Symbol� 搭Xwaw 0鮳� f�-  2 mp---��"�� � "Arial� 棿�Xwaw 0鮳� f�- 2 #�1g C g Cw{>�>{>�-��n�� � "Arial� L�Xwaw 0鮳� f�--��n�� � "Arial� 槾�Xwaw 0鮳� f�-  2 �-11Q---��"�� � "Arial� 搭Xwaw 0鮳� f�-  2 曽1 h>{-��n�� � "Arial� 橪�Xwaw 0鮳� f�--��n�� � "Arial� 搭Xwaw 0鮳� f�-  2 N�-11Q---��"�� � "Arial� 毚�Xwaw 0鮳� f�-  2 悬1)1J-.� -!痄�-�� -!鸩!痄骝�骝���oo44��-� ��Y�"Arial� @�Xwaw 0鮳� f�-- --. -  2 轱01]-. -- --. -  2 21]-. -- --. -  2 s�41]-. -- --. -  2 7�61]-. -- --. -  2 81]-. -- --. -  2 例�10]]-.� -!�-��-�览�-览�- $&�驦驦&�-�- &�&餖驦�&�-� -���� - �蟑N蟑N髛N筲�-� &���-��览�-览�- $� &鹦 9� 9� &�-�- &鹦 &� 9� 9粜 &鹦 -� -���� - �9鬺g鬺g�:g魺�-� &鹦 ��-�����-���- $L&餖孽�孽�&�-�- &餖&饏孽�孽L&餖-� -���� - �孽�2鲨2龆2��-� &餖��-�����-���- $ &� 作B作B&�-�- &� &養作B作 &� -� -���� - �作�EE鴖E�-� &� ��-��-- $�&饏AA&�-�- &饏&鹁AA鷧&饏-� -���� - �A�!历!历�历T�-� &饏��-��-- $B&養Z鼂Z鼂&�-�- &養&饆Z鼂Z麭&養-� -���� - �Z秉�秉�秉�-� &養��-�����-���- $�&鹁I鲼 I鲼 &�-�- &鹁&瘅 I鲼 I鼍&鹁-� -���� - �I鯶 馋Z 馋( 馋� �-� &鹁��-�����-���- ${&饆s鞔s鞔&�-�- &饆&鸫s鞔s鱷&饆-� -���� - �s�禀禀�禀J�-� &饆��-��览�-览�- $� &瘅 滙0 滙0 &�-�- &瘅 &�0 滙0 滙� &瘅 -� -���� - �滙� 伢� 伢a 伢� �-� &瘅 ��-��览�-览�- $�&鸫凈�凈�&�-�- &鸫&痦凈�凈�&鸫-� -���� - �凈P紧P紧紧��-� &鸫�� -!痄!�-� ��u�"Arial� Ц�Xwaw 0鮳� f�---�����-���-�- $笼]]笼-�-�����览�-览�-�- $aR齛帱�帱�R�-�-��������-���-�- $_B黖宣�宣�B�-�-�����--�- $e<鹐竖�竖�<�-�-���� --���"Arial� 鳻�Xwaw 0鮳� f�--��u�"Arial� �Xwaw 0鮳� f�-- --���"Arial� 鶢�Xwaw 0鮳� f�--��u�"Arial� 獱�Xwaw 0鮳� f�--. -  2 唿:2pM-���"Arial� 鶫�Xwaw 0鮳� f�-  2 $龂op2-��u�"Arial� 獺�Xwaw 0鮳� f�-  2 唿�Cpd-. --���"Arial� 鸛�Xwaw 0鮳� f�--��u�"Arial� 琗�Xwaw 0鮳� f�-- --���"Arial� 鼱�Xwaw 0鮳� f�--��u�"Arial� 瓲�Xwaw 0鮳� f�--. -  2 蛀56pM-���"Arial� 鼿�Xwaw 0鮳� f�-  2 鼈op2-��u�"Arial� 瓾�Xwaw 0鮳� f�-  2 蛀�Cpd-. --���"Arial� ⺋�Xwaw 0鮳� f�--��u�"Arial� 疿�Xwaw 0鮳� f�-- --���"Arial� �狀Xwaw 0鮳� f�--��u�"Arial� 盃�Xwaw 0鮳� f�--. -  2 曲+10MM-���"Arial� H�Xwaw 0鮳� f�-  2 o02-��u�"Arial� 盚�Xwaw 0鮳� f�-  2 曲�C0d-. --. . �"�"Arialp @�Xwaw 0鮳� f�-- --. -  2 敷k *0V-.���,      !"#$%&���()*���-���.���0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|���������������ObjInfo ����GPDoc Contents������������螴1Table����/c�SummaryInformation( ������荌pJSGraphicPage  ���,  $ $qp p  ���,$$aHigh-lowhConstant high Constant highConstant highConstant highS钛@侰�@�?�����������zY�?|I�4dJ@姩G�H@J糜?�����������婃�?鐯頣嶣@~@魘雳!@㈨�?�����������鮰�?N跊寧�@諕k萢&@A�?�����������塢�?灍*@爻� P @K菖?�����������蜛�?蜛�?蜛�?蜛�?蜛�?蜛�?赳}悾T�?鄎横zY�?zY�?zY�?zY�?fE�J糜?�鐏婃�?婃�?婃�?婃�?㈨�?;椿\鮰�?鮰�?鮰�?鮰�?xZ}瑼�?kF媺]�?塢�?塢�?塢�?裻K菖?!栴椅A�?蜛�?蜛�?蜛�?蜛�?蜛�?蜛�?蜛�?蜛�?览�犼� 笒���犼� 笒犼� 笒���犼� 笒览�犼� 笒 2oC6oC10oC6oC2oCqPDp p n蟓 T X� ���,7 $q:p p-  ,'Arial �€ € L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}}  $����%����!"#9:  q咮p p 告 傮� @ l� ,  q:p p �� ,'Arial �€ € L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}}  �$����%����!"#9:q�6p p R謦� 矽 ���,q:p pR �� ��  ,'Arial �� � L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}} �� �� $����%����!"#9:dN e�c ���€ q�p p  j���j� , $$ , ,    �������� qp p  qp p  qp p  qp p VWX ��� ��� ���$012@ABCg �@q�p p R謦� 矽 览�,qbp pJ �� ,'Arial �€ € t{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\f0{\fs29{\cf0Plot 1}}}}}}}  $����%����!"#9:@€ $d& ����PQ���%  $d& ����PQ���% $d& PQ% q�p p  ,d�������    �������q�p p  览�, 览�   ���  ���q�p p j���j� ,   , ,    ��������qp p 'qp p 'qp p 'qp p 'qp p 'qp p 'fqp p 'fq8p p  R謦� 矽 , $@    €�? q�p p  j���j� ,   , ,    �������� Zero Zeroq`p p  :�鶻鮽� ,'Arial �� � r{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\f0{\fs20{\cf0Zero}}}}}}} X跷� X跷�$����%����!"#9:q`p p  :�鶻鮽� ,'Arial �� � r{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\f0{\fs20{\cf0Zero}}}}}}} X跷� X跷�$����%����!"#9: q`p p  :�鶻鮽� ,'Arial �� � r{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\f0{\fs20{\cf0Zero}}}}}}} X跷� X跷�$����%����!"#9: q`p p  �  債 ,'Arial �� � r{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\f0{\fs20{\cf0Zero}}}}}}} � 矽 � 矽$����%����!"#9:'h qp p 'f qp p 'f.qp !pI.qp "pI.qp #pI���@)D/���2€345678�9�:;���<=>?�qtp $p  R謦� 矽 ,      ���     ���  ���     ���        ���  ���     ���' ���( ����������) ����������qtp %p  R謦� 矽 ,      ���     ���  ���     ���        ���  ���     ���' ���( ����������) ����������qtp &p  R謦� 矽 ,      ���     ���  ���     ���        ���  ���     ���' ���( ����������) ����������qtp 'p  R謦� 矽 ,      ���     ���  ���     ���        ���  ���     ���' ���( ����������) ����������qtp (p  R謦� 矽 ,      ���     ���  ���     ���        ���  ���     ���' ���( ����������) ����������A$ NXabcg���q�p p R謦� 矽 ,0qp )pdqp *ppqp +pq 槞櫃櫃欮� 刑烫烫�? gnoR r q�p ,p  j���j� ,  $$ , ,    �������� q�p -p  j���j� ,  $$ , ,    �������� qp .p  qp /p  qp 0p  qp 1p  qp 2p  qp 3p  q:p 4p! �琪�琪 ,'Arial �� � L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}} �d� �琪$����%����!"#9: q:p 5p!  ,'Arial �€ € L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}}  $����%����!"#9: qp 6p!\T jklmT#��� $%���&'a(+,- €�?s d/M/yyyyuv.2T#��� $%���&'a(+,- €�?s d/M/yyyyuv./0���12���34 5 678 �@9 :;�<dUVW$X $Y$Z$[ efqm p p R謦� 矽 ,�qp 7pdqp 8ppqp 9pq  �@ gnoR €@r q�p :p  j���j� ,  $$ , ,    �������� q�p ;p  j���j� ,  $$ , ,    �������� qp <�p  qp =p  qp >p  qp ?p  qp @p  qp Ap  q�p Bp! 傮�桇 ,'Arial �� � �� �{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;\f1\fnil Symbol;}{\ql\f0\cf0\up0\fs32\i0\b0\ul0\sl320\slmult0Respiration rate (\f1m\f0g C g C\up16\fs21-1\up0\fs32 h\up16\fs21-1\up0\fs32)}} 豕 桇�$����%����!"#9: q:p Cp!  ,'Arial �€ �€ L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}}  $����%����!"#9: qp Dp!\T jklmT#��� $%���&'S(+,- €�?s d/M/yyyyuv.2T#��� $%���&'S(+,- €�?s d/M/yyyyuv./0���12���34 5 678 €@9 :;�<dUVW$X $Y$Z$[ efMU$q� p Ep S 祗��  ,  q�p Fp 祗��  ���, ���   ��� ��� ���qnp Gp P鬢�  ,)2oC 'Arial �� � s{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\fs20{\cf0{\f0 2oC }}}}}}} R鑫� P鬢$%!"#9:qnp Hp P舄   ,)6oC 'Arial �� � s{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\fs20{\cf0{\f0 6oC }}}}}}} R鑫� P舄 $%!"#9:qpp Ip P酏 G鱠  ,)10oC 'Arial �� � t{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\fs20{\cf0{\f0 10oC }}}}}}} R鑫� P酏 $%!"#9:qwp Jp P鬚 �  ,)6oC 'Arial �� � |{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\ql\f0\cf0\up0\fs20\i0\b0\ul0\sl0\slmult0 6oC }} R鑫� P鬚 $%!"#9:qnp Kp P簦   ,)2oC 'Arial �� � s{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\fs20{\cf0{\f0 2oC }}}}}}} R鑫� P簦 $%!"#9:q{p Lp P赧 P赧  ,) Plot 1 Zero'Arial �  y{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\b0{\i0{\ul0{\fs20{\cf0{\f0Plot 1 Zero}}}}}}} R鑫� P赧 $%!�"#9:h<瞿 � <�qcp Mp  嗹n)�  ,  q�p Np 嗹n)�  ���, ���   ��� ��� ���q�p Op 霄�� 览�, 览�   ��� ��� ���q�p Pp 亡�} ���, ���   ��� ��� ���q�p Qp 遇�鴚 ,    ��� ��� ���q~p Rp 孂n ,'Arial �€ € �{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\ql\f0\cf0\up0\fs20\i0\b0\ul0\sl200\slmult0 2\up10\fs13o\up0\fs20C}}  �$����%����!"#9:q~p Sp x嗼e ,'Arial �€ € �{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\ql\f0\cf0\up0\fs20\i0\b0\ul0\sl200\slmult0 6\up10\fs13o\up0\fs20C}}  x�$����%����!"#9:qp Tp 欨声V ,'Arial �€ € �{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\ql\f0\cf0\up0\fs20\i0\b0\ul0\sl200\slmult0 10\up10\fs13o\up0\fs20C}}  欨t$����%����!"#9:q:p Up ^�^� ,'Arial �€ € L{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}}  ^�$����%����!"#9:qjp Vp 冽*�� ,'Arial �€ € |{\rtf1\ansi0{\colortbl\red0\green0\blue0;}\deff0{\fonttbl\f0\fnil Arial;}{\ql\f0\cf0\up0\i0\b0\ul0{\fs32\sl320\slmult0*}}}  冽d�$����%����!"#9: +AHF�>, ﹀ g燒j#瘴呋矵{V皝曷葐�'K%�"鈉槥濾�6攺徦韞蔢� 录 魿� i截蓂 {�(l 櫶KLxs:� C+B�5嘯僲�,慷s詬鰘:�拟驩鲕�淫E$2B?�6A(遾か哗! 酹@飺�1查弑?:?� Yc+誤�6洣n沙,y觮�yi缈g"Hz�?搶Q祩宪泲橔+勼|rnb婀擢谝X�8V寇/�/丝-刊恕z詁O駠vi�j#躜辂砳信媖髗二嵨沖%渋伲f#牺@n1吁0б駵H�=D眿j嚰-D穮脖%% �雸�鑄帰A/埭涆uI鯺{牀�3珵6儔礭�€|h颦@�(�%€犟進K庺仗�甡kg觞壼�/[塪{6\J灢�;弎睞恳8�7鴅籌靍�箯5鬇擩樻"蝲咘Jves�/檇銐邀ne €^使�8洉f� 愯�╛譹洉得鑇橝�#ne韕6韋畞憍€\+�9t蹁�够儇跎亃� w2蹪囂v~捹蜲2[(耹�抄�1圳矱 疱鴶U�(�&鑚�3*€�h|霴宴)ⅹy儴k�"Z;o瓔PD阵Q0焛尌0�*n^毤玿瓪韩D瘹鶽�-y笽1欋嫣j��>J匴玫E �<璙偾€鵏c,卶Vq骿鴾鈛k錅}k礭+溴&興啗Zw瑲狼bMt�孪M蔆袉敐"樝4芌g7k�aE骲mTd稐]架蘰3蹙柧毨勤⒔褶b~nR傊[L髞鵏c,卶Vqso滍鎪﹉^瑌︒妺y笽1虴�>龟β?7嘰L K4樝4芌g7毽�*�/(�k+T�)墬�覾鬗郼oqWx� 孪M蔆��4樝4芌g7宦���蛬悼嫏退M娚 7y�7亸a樘�?7�狱 h>0焛尌0�*n�?-S蛬禒j鸈驽&�4蠜狼Aw吣}?7軱伙※纜�1柭8�7盨�"y倍T吊yx笽1耢皮厩qi重糅巨o箇�妙澸oD]n暗.礯L斱_;A.&f荌]s� h邥����+ 怪`熃6鞠>;�搁7徖鴫$3�&齿擙阻�<悕1~ Z~罒茯�=w 西獧鯪L銹7`mG瞸73玖Av;穏揰Q⺌脲墦$Vǔ*涇�6雈�;kK鐏寋e9 3踟c`j兣L}莏�=GV�:;7脼篷愎0鮙3碑�SwX淘銖仼/Z淘>霕Jw�/GW;璁鴙�Ww氠O~靏蔝V\}螸�0濯�€%o 听唁[贼賢黍f梟6"E庻S网!辑蚩bX;侟?}bCt acclimate to temperatureIain Hartley Normal.dotpw93Microsoft Office Word@^胁@鼐a謇�@�-�#惿&��胀諟.摋+,D胀諟.摋+,x4 hp|��� ���� � �=Y郛' DocumentSummaryInformation8������������ €CompObj������������q������������������������KEvidence that soil microbial respiration does not acclimate to temperature Title 8@ _PID_HLINKS�A�$3Vmailto:i.p.hartley@stir.ac.ukEJc  mailto:philip.wookey@stir.ac.ukE7 #mailto:M.Sommerkorn@macaulay.ac.ukE@+#mailto:M.Garnett@nercrcl.gla.ac.ukE%Jmailto:d.w.hopkins@scri.ac.ukE3Vmailto:i.p.hartley@stir.ac.ukE� ���� �FMicrosoft Office Word Document MSWordDocWord.Document.8�9瞦��@@�@ NormalCJ_HaJmH sH tH F@F �!� Heading 17$8$@&H$ PJnHtHDA@��D Default Paragraph FontRi��R  Table Normal�4� l4�a� (k��(No List8﨩�8 2�aff d�ゐ 6乤JtH 8﨩8 iqack d�ゐ CJaJtH $﨩$ iqsupp6U@�!6 iq Hyperlink >*B*ph�H橜2H �8; Balloon TextCJOJQJ^JaJB'@�AB .@Comment ReferenceCJaJ<�@R<� .@ Comment TextCJaJ@jQR@ .@Comment Subject5乗仸T@r� [# Block Textb$ �) �S�p@ ��€P ��!�勁�;�d�5$7$8$9DH$]�^勁`�;齛$B*OJQJaJphB﨩B w�xl377$8$H$ PJnHtH>@�> �� Footnote TextCJaJ@&@��@ ��Footnote ReferenceH*4@�4 ��Header  �9r 4 @�4 ��Footer  �9r .)@��. Wka Page Number.(@��. �>? Line Number�舶 (:ET舶����7����6����3����2����*����)���� (:ETW��舶€����3�嘲 @00X�0€€MO�jtuX Y g h �$怈鮃睵疩H~��釄3�嘲�0€€€�0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯0€€€欯 0€€€ @00D�0€€MNOX���,-rs��$%.��A�?@������89NOcd€?jtu� � � � X Y g h x+['�!�$�$�$�$ % %*�/�/�/�177F7G7e7f7�:�:�:�:s@t@|@}@廆怈駼C CdD孌礑禗嘐鮃fKgK嶬廗:M慞揚盤睵甉疩肣腝U萖``/`0`痙竓k榦3q4q5q6q7quqvq抯鵹妜⺻�y z zH~I~J~K~\~]~����N€O€閫陘厑唩M�N�=�>�鲀鴥巹弰羺聟}�~���\�]�釄鈭憠拤墛妸3�4�/�0�銓鋵趰蹗儙剮顜飵⿵獜T�U�鍚鎼}�~�%�&�枓棐+�,�険霌褦覕啎嚂g�h�?�@�迼邨憳挊��謾讬w�x�.�/�^�_���邼酀嚍垶?�@�鞜頍藸虪z�{�Q�R�懀挘S�T�d�e�猾甬�+�-�.�/�0�1�2�3�4�5�6�8�;�>�A�K�L�M�Y�Z�[�\�f�g�x�y�儼劙暟柊牥“鞍嘲�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€欯0€€ 00J欯0€€欯0€€欯0€€欯0€€欯0€€�€楡0€€€楡0€€€楡0€€楡0€€楡0€€€ 00�0€€�0€€��0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€€X�0 �MOX���,-rs��$%.��A�?@������89NOcd€?jtu� � X Y g h x+['�!�$�$�$�$ % %*�/�/�/�177F7G7e7f7�:�:�:�:s@t@|@}@廆怈駼C CdD孌礑禗嘐鮃fKgK嶬廗:M慞揚盤睵甉疩肣腝U萖``/`0`痙竓k榦3q4q5q6q7quqvq抯鵹妜⺻�y z zH~I~J~K~\~]~����N€O€閫陘厑唩M�N�=�>�鲀鴥巹弰聟词�袄�闭�釄鈭拤墛妸3�4�/�0�銓儙剐⿵獜鲍�鎼词�棐+�,�霌褦覕啎嚂丑�?�蔼�邨憳挊��谩飞�虫�/�镑�冲��邼酀鞜頍藸虪锄�调�蚕�搁�懀挘厂�罢�诲�别�猾甬�+�-�3�4�5�6�8�9�;�<�>�?�础�叠�袄�蹿�驳�虫�儼劙暟牥嘲�0赌赌�0赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌娡060产赌�0赌赌�0赌赌�0赌赌�0赌赌�0赌赌欯0赌赌妽060诲赌垗020触赌妽060产赌妽060产赌妽060产赌妽060产赌�0赌赌�0赌赌�0赌赌�0赌赌赌�0赌赌赌妽0<0`€垗0?0�€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€垗0H0W€�0€€€�0€€€�0€€€�0€€€�0€€€垗0O0S垗0O0R�0€€娡0U0�€娡0R0�€欯0€€欯0€€欯0€€欯0€€欯0€€Z�0_0�€�0€€楡0€€€垗0T0T垗0T0S垗0T0R欯0€€€欯0€€€妽0U0O�0€€�0€€�0€€�0€€�0€€�0€€垗0U0L€垗0U0K€妽0h0d垗0]0N妽0t0q€垗0U0I€妽0U0I€垗0U0J€妽0U0I€妽0z0l€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€妽0w0^€�0€€€�0€€€�0€€€�0€€€�0€€€欯0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€�0€€€�0€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€垗0v0D€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€埻00€�0€€€垗0m0,€垗0m0,€楡0€€�0€€€�0€€€垗0m0.nZ��0€€€垗0~0,€垗0~0*€垗0w0'€垗0w0(€垗0w0(€垗0w0(€垗0w0'€�0€€€�0€€€�0€€€�0€€€�0€€€�0€€€垗0v0!€垗0v0 €垗0�0 �鑂垗0x0€垗0�0垗0x0yh��0€€€垗0y0€�0€€€�0€€€�0€€€垗0~0€�0€€€垗0�0)€垗0�0'€楡0€€€�0€€€�0€€€�0€€€垗0�0€�0€€€垗0�0!� ~�垗0�0 €垗0�0€欯0€€�0€€€垗0�0€垗0�0€垗0�0€垗0�0 €妽0�0 妽0�0 �0€€�0€€垗0�0 ��,)垗0�0 垗0�0埻00 @0妽0�0€垗0�0€娡00埻00娡00€埻00€@00!�€€~埻00€00JX�00�X�00�X�00�X�00�X�00�X�00�X�00�X�00�X�00��欯0€€€X�00$�欯0€€€楡0€€€X�00� ]�0€€€楡0€€€�€€LM %%%(@ R  � K %��j������!&$�&�(�)�,R.�0�4v8=稝腃FsH臝蚃CL蜯鐽bP5R蟂;U僕腨竅$^ー鎍ud歩舓n)p5sw鑩▅梹雮 �=�葘袕瓝髺*�麣铦浮P�v�汞虬宀挻降穸0�#u僽緑w]`abcefghijlmnopqrstuvwxyz|}~���������������������������������������������������� Y2轈N\莧I�3�蠝悖>�动恦w^dk{€����������w_@m�����#?U�����&=駼 C CdD|DD孌�'�)�舶X��X��X��X��X��X�創_�湏_�湏_��:�晫 !(!�!�晙餿�9:�4"�$渌4wF睵{&4<蚳鰋������"�$�*ホ萲j�棌�谣������"�$紊迅�8憎�#爍d������"�$疻=g辈豯.忼7墂� ������"�$�五QV� 瘭!o▂�5����"�$嵏":_�8�� 繍@*������"�$jp"^LWB 濹\})������@����€€€��� 9鸩�( � �鹌饐 �� � �� �,# � ��� s"�*�����?��餪� �+ c �$X99��?�� � ���餪 �) C �€�秽����� ,X�� �餪� �* C �€�秽����$� �;� �鹨饐 �� � h �5# � ��� s"�*�����?��餪� �4 c �$X99��?�� � h�餱� �2 S �€��秽����� €h� �餱� �3 S �€��秽������ �%� �鹨饐 �� � h �9# � ��� s"�*�����?��餪� �8 c �$X99��?�� � h�餱� �6 S �€��秽����� €h� �餱� �7 S �€��秽������ �%� �養 �S ���� ?� C}D舶, �t€9� �t€5� �t€�� OLE_LINK5 OLE_LINK6 OLE_LINK7 OLE_LINK8 OLE_LINK3 OLE_LINK4 OLE_LINK1 OLE_LINK233�=�=TT埭埭嘲���=�=?T?T荬荬嘲��J�荦.�糸�绰G�湣��4g�ぉ��\�5� �5�紭5�l�5�i/�磇/�$�/�圆/�劤/�4�/��/�瘁/�d�/�憎/�Lx/�T�5�琠5�d5�/�旕/�攔/�?@ABCDEHFGI'++dmqq��������##��  /*;*;*�-�-...,000�0�0�0�9�9�9�9�:�:�:0€;€L€L€d�j�j�靺騾騾蕩諑鎺鎺厫厫彇彇-�-�E�S�S�摹啤獭摇摇嘲  !"#$%&')(*+,-./0123456789:;<�=>?@ABCDEGHFI >F*€urn:schemas-microsoft-com:office:smarttags €PostalCode€:;*€urn:schemas-microsoft-com:office:smarttags€Street€9!*€urn:schemas-microsoft-com:office:smarttags€State€;<�*€urn:schemas-microsoft-com:office:smarttags€address€8H*€urn:schemas-microsoft-com:office:smarttags€City€BE*€urn:schemas-microsoft-com:office:smarttags€country-region€=I*€urn:schemas-microsoft-com:office:smarttags €PlaceName€=J*€urn:schemas-microsoft-com:office:smarttags €PlaceType€9G*€urn:schemas-microsoft-com:office:smarttags€place€ h�&JIHGFEHGFEIIIJ<�;HGHGFEEGEGJGIHEHGEHEHGEHG!EHGEIJHGHG!HGEIJHGHGHGHGHHGHG!!!Q\����� ������$?AR����� �  � � � � eh'kz������gm������������ ���qw��!/4GMkq��������u { X!`!�!�!-#.#�%�%�&�&�&'''('.')$)�*�*�-�-�-�-�-�-..m/r/%0,0u0y0z0~011~:�:SS璖稴篠縎TTT!T/T4T¬QW\WZZ黌�Z\%\竆肻^^._1_擾焈唂宖ggg$gQrVr鎤韜鮳�wxxx!x魓齲U}\}]€d€襽賭齹�n�u�晛潄麃�6�=�c�k�變軆��弰晞鈩閯駝鴦鯀��眴穯膯褑崌搰晣�]�d�拤槈鷫�p�w�鲓�祵紝繉聦��M�W�X�c�悕瀺脥蓫蹗釐閸饙鴯� ��飵鶐拸檹獜磸U�Z�f�o� ��&�)�k�o�|�€�棐殥珤畳I�R�鷵 ��)��帞獢瓟覕讛邤鏀m�t�皶簳h�n�v��棖灃瓥@�J�Q�V�畻禇翖蕳邨陾饤鷹��t�}�瓨矘粯葮��A�H�讬軝b�h�槡煔/�5�[�`�潧E�N�_�e���>�顿�錆铦苍�飞�%�/�补�丑�蜔譄鰺麩��虪諣逘鍫调��挕湣怠尽摆�肠�颈�惫�嫝摙櫌"惫�调�停希�(�4�6�6�8�8�9�9�;�<�>�?�A�B�[�\�嘲}���@A�!&!%0,0~F團�€€&€O€苺陘��b�唩蛠N�殏&�/�變輧鴥��n�,�▍聟 ��f�~�脝�6�7�寚崌�:�;�@�蠄鄨鈭�拤缐翂d�妸蕣藠��� ��0�⿲鋵 �脥藣蹗 �!�b�c�h� �啅1�6�U�搻攼蛺詯趷鎼 �&�/�~� ��k�p�蛼�,�`�霌晹枖洈覕�嚂鰰h�臇艝(�@�b�紬藯o�~�挊謽讟䴓�V�禉簷讬䴔��a�x�瓪畾 � ��/�矝硾D�_�煖牅铚�P�酀銤�m�垶癁%�1�@�t�u�菬葻谉頍&�嫚挔瓲虪鬆邸,�R�娶v�|�埽1�2�7�?�C�4�6�6�8�8�9�9�;�<�>�?�础�叠�摆�袄�嘲33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333迟蔼怈甬�+�3�4�6�6�8�8�9�9�;�<�>�?�础�叠�摆�袄�别�驳�飞�测�偘劙敯柊煱“嘲4�6�6�8�8�9�9�;�<�>�?�A�B�[�\�嘲��$叔���������U�F蕴����������z3$叔���������8~>F蕴��������� 勑剺���^勑`剺䁖(噃圚.€ 劆剺���^劆`剺䥽h圚.� 刾凩��p^刾`凩�噃圚.€ 凘 剺��@ ^凘 `剺䥽h圚.€ �剺��^�`剺䥽h圚.� 勦凩���^勦`凩�噃圚.€ 劙剺���^劙`剺䥽h圚.€ 剙剺��€^剙`剺䥽h圚.� 凱凩��P^凱`凩�噃圚.h勑剺���^勑`剺⺗J.h劆剺���^劆`剺⺗J.h刾凩��p^刾`凩�^J.h凘 剺��@ ^凘 `剺⺗J.h�剺��^�`剺⺗J.h勦凩���^勦`凩�^J.h劙剺���^劙`剺⺗J.h剙剺��€^剙`剺⺗J.h凱凩��P^凱`凩�^J. 勑剺���^勑`剺䁖(噃圚. 劆剺���^劆`剺䥽h圚. 刾凩��p^刾`凩�噃圚. 凘 剺��@ ^凘 `剺䥽h圚. �剺��^�`剺䥽h圚. 勦凩���^勦`凩�噃圚. 劙剺���^劙`剺䥽h圚. 剙剺��€^剙`剺䥽h圚. 凱凩��P^凱`凩�噃圚.h勑剺���^勑`剺⺗J.€h劆剺���^劆`剺⺗J.�h刾凩��p^刾`凩�^J.€h凘 剺��@ ^凘 `剺⺗J.€h�剺��^�`剺⺗J.�h勦凩���^勦`凩�^J.€h劙剺���^劙`剺⺗J.€h剙剺��€^剙`剺⺗J.�h凱凩��P^凱`凩�^J.8~>��U��z3���������������������!2�                 蚠�%����2�3�!8Ca沠Og[u螸!"釩K�G-�<AG峏)_詏3~�� (B��&r8碏@ o��(W1hM�T籤ヽn轈 _j  � �" 睞 "J 躥 聀 W �% �0 臚 0W � %! �?  滸 )K gT Q5P� 8礗睰錟�6&&'~:瞘�#�,-B轍;T鮖{]b^uh韗��)_u*v}w� >痴耻!�%��调!办,1!?蒍翱产蹿辞蹿豧駆颈辩�#�9虫笔蝉罢巑詝顿词奥!肠僣碍箩�调�&贵厂蝉触锄剘摆#�5�<贠q� +,�;饂&q'�.[L&P蝆+n}��*狥韀<$鄋 �m�*�+?f�`"�(C.凙蓔\ �#w=PCdl8o�4 A5 eL �!�$!m2!燜!絍!!kY!9[!]!�"�,"�4"�>"珼"質"�#%5#芺#{#竱# $�$y$�*$�1$繧$ P$V^$io$hv$J8%鴟%� &�&�&�'�'u"'4)'耡'i'� (d(颻(Uz(恷(jb)�*>*贕*?a*鑠*謙*d>+婼+`,�#,,媑,Ws,�/-砕-沜-踤-.�.�$.竀.躳.�/�/�(/>Q/餸/+0�%0Y10咥0萮0ss0遱0az0{0謑1�22瞆2爌2v3J335]3� 4�4�#4�(440N4nf44r4�75&J54p55x5銩6襰6焧6O.7Q7﹖7�8�8�*8顲8=[8_n8�9�9u9�%9g(9yA9[H9鱉9,:軵:�;�8;闌;YK;$b;Qi;鉵;~v;'0<�7<� O<�7V<�j<�[<�^={u=>w>P~>�.?�>?貳?#y?�@.@r9@uL@釺@赱@g@ h@�$A{kAbqBiDCdChtC�*D�9D kD`rD�:E JE扴E琩EVrE\rEBGF贠F禮F鑍F榟F�GG躪G焣G泇G�H�H�)H[KH+$I�=IlAI鏑IEJI怰I鯳I8bIXkIsI�JP8J% K濫K鸍K*KK� L L�L�?L鴑LWtL€'M琻MX~M| Nm8N袶N匥N€^NzcN/hN俹NU OKOUOO1O鴕OT(PKNP8QPP蒫P鹖P攐P� Q�QQ W\tWXcX-gXgsX�Y� YQY�3Y�Z�.ZXHZ6hZ舏Za~Z�[禓[ L[$R[黕[縫[�\P$\輕\Tu\j*]D!^�7^�<^3#_Z'_-q_k`y%`闤`:e`;afMajaWka俻a€{a<bXb$bL?bocb�ckc/cR5c�;c鬉cGcEOcac[qc卾ctdud�d莇deB$e!p[p/pp?{pHq-EqGq[q8vq-r,r爌r�'s薈ss� t�%tg|tLui0u�#v9v糢vu4 €T1€橽€_^€On€�!�S#��+�-��;�#t�L���>�Z���~2�鵋�膁�bx�.9�D� ^���4��痶�fu���24� �� �}5��9�怑�瞇�J�髒���� � �[I�#�e-�禛�V�甿�J�蚟�踂�顀�t �� ���iU�鷘�j}���"-�TY�(��1�橧����7�咢�b����/�3��6�竁�Sd�Lu�恴�_���胾�蓇�縴�t3�s?�韛���� ���-��3��:�鱳��6��'i� �禞�@m�9'�汣�b�3e�亂�� ������+�!2��;�C�螹�筜�萢���軧��%�糒�QD�瞔�t}�S)�vH�羜��&�t;�皏��� 6�淔�h�榮�#}���b��2�<4��8�鯲���t��� 7� J� g�p�琱�|�;e�$o��:��:�E�䅟����-�*Y�鍬�XA�絧� ��/�Xc�刾����#�:J�qk�蘰��v#�FJ�o�紃�魙������籇�芣�pz�鰗�#�矪�╙��&��/�媈�奻�fm��-�萫�4�� �嘒�荖�GU�]w�.� %��&�?J�lL�舃�紈�n|���e8�哠���%�W(�^1�vA��(��,�蚆�Tz� �誫�鑥� ��0� 1�^7�礧�_�K �{2�gh�衟� �?'�/2�岼�^Q�硄�{s� ��$�u �+�!!�僁�~j�貆� �� �k"�#�6�m+��8�賨� ���4� p�{�恾�39�腒�鳲�Oj�辯�f��$�Mf���%�z*�€Z�[�=^���#�0�E�Hp�4��&�瀕���ZG�闠�俈�_�薳�誵�4.�莇�V��!��1�DI����1R�W]�踓�ye�!r�1w���裍�榪���w(� +�ca� h�5l�w���}�_"�k/�t^�眪�V������!��=�E��5g�憊�Z�����錙��)�S4����;�H�餘�;v����!�u0�.a�B �B�Q��'��*���� � �kl�Bm�$�/1�[4��8�訶������,��=�鉳�o �1N�鹢�r�O�[4�鴃�~U�^�V~�w��&�R>�鐼�譨�����*�砆�鷎�蝵�����麳�=g��"�yH�#W�����qR�0�q.�`Z�遝�沴�4�T�頛�蘊�Tg�Bz�!�v���#�%�盄�継�����Q"�{#��5��Jt� �����''�H�琍�塦�e���k�L�TR�鋦�F�k;�wK�郠�e]�爓�眐�絧�18�-x��6�K=�3�3]� _�䓖�k}�鱹�$� 3��9�LF�騛��!� $�E(�Jl� ���06�﹐���=���!>�2T�鮑�r� t���w!�!%�@%�M{�f�K%�秡�9}�%M�巆�Yh���]���k����-�c=�丱�iV�#�,0�怓�峅�塝�;�R�;�-��>�蹳�Z�鄀�W{���������6!�F=��?�mv�昩�籮�Nm�&r���� �$7�Z8�GB�玕�鵠�it�譼�梪�e�4J� j� ���w�W!�K�wr�巬�2���I=�鴖�%��0�X�繾�:l�$r�i;�鏎�D�>Z�� ��*�E]�▁�5�aE�ca�Tm�X�.��8ct@猾4�悲嘲yU�@拤翂峱拤拤|�1�2疨疩瘉瘋舶�@�:�x@�Z��@���@���d@��@��UnknownUnknown��Unknown20090216T09015701A傄&����������G�噝 €�Times New Roman5�€Symbol3&� 噝 €�ArialG5�€  �狖h�MS Mincho-�3� fg5&� 噝a€�TahomaA&� ��Arial Narrow"1垐鹦hH渑f瘋�&&�Y�=L闀Z?!����倎4d郛郫2僸� HX �?����������������袶N2��JEvidence that soil microbial respiration does not acclimate to temperature Iain Hartleypw9