ࡱ> oqn%` v*bjbjNN .T,,n"|$,4Np.+? +++++++$L-h/ +"""+;+_'_'_'"+_'"+_'_'XJ_'B aď$X_'s+$+0,_'0%J0_'0_'KV_'Y KKK++O'KKK,""""ZD Z No evidence for compensatory thermal adaptation of soil microbial respiration in the study of Bradford et al. (Ecol. Lett., 2008, 11, 1316-1327). Authors: Iain P. Hartley1,*, David W. Hopkins1,2, Mark H. Garnett3, Martin Sommerkorn4 and Philip A. Wookey1 Affiliations: 1 School of Biological and Environmental Sciences, ҪԹ, Stirling, FK9 4LA, UK 2 Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK 3 NERC Radiocarbon Laboratory, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, Glasgow G75 0QF 4 Macaulay Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK E-mails: Iain P. Hartley:  HYPERLINK "mailto:i.p.hartley@stir.ac.uk" i.p.hartley@stir.ac.uk David W. Hopkins:  HYPERLINK "mailto:d.w.hopkins@scri.ac.uk" d.w.hopkins@scri.ac.uk Mark H. Garnett:  HYPERLINK "mailto:M.Garnett@nercrcl.gla.ac.uk" M.Garnett@nercrcl.gla.ac.uk Martin Sommerkorn:  HYPERLINK "mailto:M.Sommerkorn@macaulay.ac.uk" M.Sommerkorn@macaulay.ac.uk Philip A. Wookey:  HYPERLINK "mailto:philip.wookey@stir.ac.uk" philip.wookey@stir.ac.uk Keywords: Acclimation, adaptation, soil, temperature Article type: Technical comment Number of words in abstract: 50 Number of words in article: 719 Number of references: 4 Number of figures: 2 Number of tables: 0 Correspondence author (*): Iain P. Hartley, School of Biological and Environmental Sciences, ҪԹ, Stirling, FK9 4LA, UK; E-mail:  HYPERLINK "mailto:i.p.hartley@stir.ac.uk" i.p.hartley@stir.ac.uk Tel: +44 1786 467757; Fax: +44 1786 467843 Abstract Bradford et al. (2008) conclude that thermal adaptation will reduce the response of soil microbial respiration to rising global temperatures. However, we question both the methods used to calculate mass-specific respiration rates and the interpretation of the results. No clear evidence of thermal adaptation reducing soil microbial activity was produced. Keywords: Acclimation, adaptation, soil, temperature Bradford et al. (2008) demonstrate that the rate of mass-specific microbial respiration in soils (Rmass) declines in response to both experimental warming and seasonal increases in temperature, potentially reducing the long-term response of soil respiration to global warming. However, there are issues with the method used to measure Rmass. Rmass was calculated as a ratio between the rate of substrate-induced respiration (SIR) measured after 4 hours (yeast extract added at 20oC) and 24 hours (sucrose added at 10, 15 and 20oC). Fig.1 illustrates how closely correlated these two assays are. The authors consider the former to measure microbial biomass, and the sucrose assay to measure microbial activity. These two SIR assays are close analogs and, in calculating Rmass, the authors are effectively dividing something by itself. Furthermore, through isotopic (13C) separation, the sucrose-induced respiration assay did not include CO2 from soil organic matter decomposition. This may explain why the intercept of the relationship between the two SIR assays is not zero (Fig. 1). Alternatively, differences in the range of compounds added in the yeast extract, including amino acids, could have resulted in some differences in the physiological processing of the added substrates. Whatever the cause of the non-zero intercept, the overall result is that Rmass varies systematically with the underlying value of the xaxis variable (yeast-extract induced respiration in Fig. 1), especially when x is low. Reflecting this, due to the low microbial biomass, Rmass in the mineral soils increased significantly with the underlying rate of yeast-extract induced respiration (y=0.00625x+0.162, R2=0.701, P=0.0264). In terms of the results from the Harvard forest long-term experiment, as soil warming reduced microbial biomass, this inevitably led to a reduction in Rmass, at least partially explaining the lower Rmass calculated for the warmed mineral soils. In contrast, the higher rates of SIR in the organic soils resulted in the calculation of Rmass being affected less by changes in the underlying rate of yeast-extract induced respiration, potentially explaining why Rmass was not reduced in the warmed organic soils. It is extremely important to emphasise a point made by Bradford et al. (2008); when temperatures are increased it is impossible to distinguish between direct thermal adaptation and microbial community responses mediated through warming-induced changes in substrate availability (labile substrate availability was shown to have been reduced substantially by soil warming in this study). Even if the method for calculating Rmass had been appropriate, given that no reduction in Rmass was observed in the organic soils, the lower Rmass in the warmed mineral soils would more likely have been explained by the response of the microbial community to the indirect effect of warming; the loss of labile C. Steinweg et al. (2008) demonstrated that microbial communities in soils which are depleted in readily-decomposable carbon respond more slowly to the addition of labile substrates. Therefore, in the original paper, the seasonal trends represented the only real evidence for compensatory thermal adaptation. Given the issues associated with the SIR method of calculating Rmass, we have recalculated Rmass this time expressing it per unit chloroform fumigation-extraction (CFE) biomass (a more independent assay of microbial biomass). Rather than correlating Rmass with the mean soil temperature over an arbitrary time-period prior to each sampling date (63 or 77 days in the original paper), we simply present Rmass at 10, 15 and 20oC for the two warmer vs. the two cooler months (Fig.2). Although there may be some evidence of a small down-regulation in Rmass measured at 15oC during the warmer months, this is overshadowed by the large increase in Rmass when measured at 20oC. This result suggests that exposure to warmer temperatures has increased mass-specific respiration at higher temperatures. In contrast to the conclusions of the original paper, and in agreement with previous work (Hartley et al. 2007 & 2008), these results raise the possibility of thermal adaptation enhancing the response of soil microbial respiration to a persistent warming trend. In summary, we question the novel methodological approach adopted by Bradford et al. (2008), and suggest that their conclusions are not supported by the data. We conclude that substrate depletion remains the factor most likely to explain the subsequent decline in respiration rates that follows the initial stimulation of activity in long-term, soil-warming experiments. References Bradford, M.A., Davies, C.A., Frey, S.D., Maddox, T.R., Melillo, J.M., Mohan, J.E., Reynolds, J.F., Treseder, K.K. & Wallenstein, M.D. (2008) Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett., 11, 1316-1327. Hartley, I.P., Heinemeyer, A., Evans, S.P. & Ineson, P. (2007) The effect of soil warming on bulk soil vs. rhizosphere respiration. Glob. Change Biol., 13, 2654-2667. Hartley, I.P., Hopkins, D.W., Garnett, M.H., Sommerkorn, M. & Wookey, P.A. (2008) Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett., 11, 1092-1100. Steinweg, J.M., Plante, A.F., Conant, R.T., Paul, E.A. & Tanaka, D.L. (2008) Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol. Biochem., 40, 2722-2728. Figure legends Figure 1 The relationship between yeast extract-induced respiration (considered to represent microbial biomass) and the rate of sucrose respiration (considered to represent microbial activity) when both measured at 20oC. The values are taken from Table 1 (SIR data) and Figure S3 (20oC data) in Bradford et al. (2008). Our graph plots the monthly mean values for organic (circles) and mineral soils (triangles), from warmed (closed symbols) and control plots (open symbols). An overall linear regression between the two variables is shown (hashed line). It should be noted that the intercept of the regression line (-7.69) differs significantly from zero (P<0.001). Figure 2 Rmass expressed per unit chloroform fumigation extraction (CFE) biomass (i.e. rate of microbial respiration of sucrose divided by CFE biomass). The data are presented as an average for the two cool (April and November) and two warm (July and October) months. Based on the argument developed in the original paper, October is considered to be a warm month due to its recent thermal history. The data are taken from Table1 (CFE data) and Figure S3 (sucrose respiration). Each data point represents the overall average Rmass value calculated from the warmed and control, organic and mineral soils. Figure 1  Figure 2  gloy    r s , - i s  ¶¶¶¶¶Ͷ¶¶¶§•|tith Vh9imH sH h9imH sH jh9iUmH sH hCh9i0JmH sH #jhCh9iUmH sH jhCh9iUmH sH hCh9iH*mH sH hCh9imH sH hCh9i5mH sH h9ih65CJ aJ h9ih9i56CJ aJ h9ih9i5CJ aJ )   q r + , i j s $ G H } ~ $da$gd9igd9i$a$gd9in*u* " # 6 7 g h i ɺɨɏ{dR{R8d2jhCh9i6PJUmH nHsH tH#hCh9i6PJmH nHsH tH,jhCh9i6PJUmH nHsH tH'hCh9i6PJaJmH nHsH tHhCh9i6mH sH hCh9i0JmH sH #jhCh9iUmH sH jhCh9iUmH sH hCh9imH sH hQh9i0JmH sH jh9iUmH sH #jhQh9iUmH sH  + , - E F G H P R S _ k | ~ qfXfXqHh9iPJaJmH nHsH tHhCh9i6\mH sH h9i6\mH sH *hCh9i56PJaJmH nHsH tHhCh9i0JmH sH #jhCh9iUmH sH jhCh9iUmH sH hCh9imH sH 'hCh9i6PJaJmH nHsH tH,jhCh9i6PJUmH nHsH tH'hCh9i0J6PJmH nHsH tH  # $ % > R dzdzdzodzdzdzdzcL,jhCh9i6PJUmH nHsH tHhCh9i6mH sH !hxo6PJaJmH nHsH tH!h6PJaJmH nHsH tH!h6PJaJmH nHsH tH!h9i6PJaJmH nHsH tH'hCh9i6PJaJmH nHsH tH*hCh9i56PJaJmH nHsH tH$hCh9iPJaJmH nHsH tHh.rPJaJmH nHsH tH   $ % A +,-6($d`a$gd) $da$gd)dgd $da$gd $da$gd9i +,-6?D[$CDEKLktyُ~zvzzrkgkzc_c_z_gvczhhy*h hHhHhEh0|]hxhHhH6hH h9i5 h5'hCh9i0J6PJmH nHsH tH,jhCh9i6PJUmH nHsH tH2jhCh9i6PJUmH nHsH tH'hCh9i6PJaJmH nHsH tH#hCh9i6PJmH nHsH tH#(1348:;BVWcy !%'()ҾҶª¾ҪҢҞ~vh)h)6hVhVH*hVhV6h%:h}[hVhP~h)hdhb+h phhh4 RH*hhh4 R6hKheMhhmh4 R6h4 RhmhS hH6 h6hS hS 6hS h6 hx5h-)-.=HO[z%'5;Dbdgz} ߻߷߳ëãïïïhEh$h$H*h$h$6hl`hehxohd6hP~h~?h$hYhhH*hhRh'0Nh+h 9hJ?h)h89hh)h)H*:$3579DE~!"#'+.R`apu %)4]_v丰ԬԨАЈh,h3~h}[h3~h3~H*h3~h3~6h WhuhKhJwhJwH*hJwhJw6h`hxoh/[hI4hl`hh Q%hEhEH*hJwhtVhtVH*htVhEh)\xhd4vw%&*+,FITUYZhim<YZ^_bgouvû˷˷糯˗˓ˏˇhl<hpo6htVh ,hwRh8h Q%h Q%H*h Q%h Q%6h$h Q%hhpohpoH*hpohpo6hpoh}[h27h27H*h27h276hsh27h1>hl`h,h,h,H*3 """"##q$<%L%M%''G*dgdH$hd^h`a$gd]$hd^h`a$gdH $da$gdH$d`a$gd$d`a$gd ^$d`a$gdpo  237Lijnu1FQV;=GLUe幱魥h ^h ^H*h ^h ^6h`h3OhCQ1h ^hWBh9 dhpo6hpoh)\xhdH*h)\xhd6hP h)\xh)\xH*h)\xh)\x6hdhdH*hdhd6hdhs hdh)\xh)\xh?hZ1)*Ztuy  "#)57HJZ[ 3 L O ~ ииȰШh|hb0<hoh* hCQ16hCQ1hCQ1H*hCQ1hCQ1H*hCQ1hCQ16hCQ1h ^h ^H*h=_h27h ^hCQ1H*h ^hCQ16h`h ^h* @ !! !!!!!"!#!3!8!9!:!L!!!!!! " """""E""""""# #ܴzzrhEP|CJaJhvZhL{6CJaJhvZh- V6CJaJhvZh- VCJaJhd6h- VCJaJhThL{hT5h|h\{hKh4 Rhthxhb0<h+,9hmmh3"h|hh|hd6hh x͚ |' DYM$AD)RD"H$AM(Qi Tm)R@,*P!W3;nLH |y3;T4EEhAQͨ^4Z,wa5&D#Llf4vR0Z!F˗/_Q#Xc.ҁO/ԕ??]HJ7F?p9H(jwj~n`m璩ps Npe'Qn3lFqId2 jF>{󎠳ǚ߳15BW<чG 1ylp_{OhU. $~]!}}aأڲ|#stƜ2WybgzcgO]8={r6c.v4ƹsaHF7¸_FoWuz~ٹa1k[q\X\m]G]Y"ʴ֗67\I֯+ (XI3um]YBmusDZc7hb8@^nqIf^iq%)㧍W\?5$pFjU`˥rv ;??wW:"(hdAy&aoshN~3F̭c{q]b~@Ӎ=(u.b&c?͘c)oQKMh]g֗"MJ͹Z3M9iUDv*Uc~XT?υ*a1koǟunRaGc8ȇ13KTAæZXWB:Ha ywucYuT9p޸甔4[t5bACsvݪ3Uiv~cT 8ꈽQY4jlε|L'ZU{kc#ObS#O3E=*U7W뽫NoUѶ-#Nh;y 6@$hG$R6J!YhgUD+ԉ&W6N8?$ f͗׽IԢYYp*MWʩk)QrքrZ+Y9hBwm;ה_UWvʫ6vU"nvk%<]s`ejݝnzG1ߋA=^=1|vZ>vIp<{.NZP*Ԛ݁~w@؏AӠYt768mCg3@lLvd-bGٹ٥7A 1;l9h?t>aN߁α H`.(.e 15\Pn0ercA=b"=jHnSP=ڲ{@2k с7A'4JX CVPh hpT,A 1\zRH=#/Ba -ah00x\x:!LXZX(Da,=S<JPo-:KL;ǐ>! X ǂP4_\qtB Gq3OvzCf3XlO!VX>A'Ķ_ 17b#@xXG@I,Pt-(Ntt4\t c$;)*΢ǤK@eR@g 1ji0kңٰWZ:(m}! VB:CAt%WfE^nA]~>} 1@y~+? $Eh@ zZ>zV>q|:!~Q@]n#{;r{a'Ky ;A+ONDT 1t<,1PKe+,Z){8=hE-CVUMV:J2TZ6*_SV@'dTje3h/G^XQ>T ^JDB%9)1J:!*TہRG5:#٠է@#?E|X}:!*T =Q|KX,Rς"yY2B cr vtBFUWN`qJ}tN]U J{ 1EQjh2A7k<,zh~Z~ſGFj٠<펔@m0tBF}M=ʴX-=ڤ *vvj"}Q)jg@jdQeP)jAv#{߀@V脌Qݢ/N}hw(=8Q: Q3* =6բu5zTԌzf6Л]8}Zj a}.tBFͨ/פڽ[lVmSMs,i#uW x N>ib!{+^sZ] ~)_Iq2qT~:O?^[ o(t拤pC|egvvJ,Z>\`&q;Աw rq13gCf7UQǣ6pCffkð籲YF'r>ʪ۲O<ה5jP+ϏRu ׬KeeTPud1'V%O0ǨG+3Y"vn?M_k;[98KJ+*֬W+>RCe,ԯ_Q阈ܬ} wʹRKM.ZZb٢U yTE UAjhY{8Bii˹aQZaE<R%O+ >C74/ih1C4sއj9JigW)j,4}s}D_S}M+oB#!=Bߩlu 3-?L>5];OJP 5e)\)[ǔ O2; ,, S6"l~($+Z1e#mYBYwdz=q'"r Al-Yӥ!rd!o@%KOVS*@K%},"_ Z3@%K5Ļ@K>#}-Y:[L|,5'f,?'@KdG!?dh~GE%KC b@%KWCZ|࿋ w Z4Ad *'-YZ V-Y%^,m ,=@(h=ǿW ВL В~xdmL w@KN @%KS@%K; @%K!ah!hɒ;p <3,udi€"Вx(LdiX Z4><(h+1=@%K |L |"h€'[C, x莖,560R`ђ][bw`@%K MG 3>[`@%KIx4Ⱥd`I7 qSp@%K3 bSp@GFx:I В_[g-Y:hb&G@KX@p4d,|@%K5o"7 ZX@Km>N;'hAes@ů4} 4_ TZ*Ft@DBbhh@%K7vЏ-YZ:BBo ZD,A<:'h9d<.QWHۑ|}v[9/'i:-k"1 t-͆gl5[*tkcmguͰNM_s z' Ե|֗c1P>d͓2Nj_7α)+I4xz2;v3퉅7q;|QS:qRwmfkx5s"صstp}ZX,4Ѧ\^HdU.,7:[nX ~w|5W_bL枃63,esƲO3c21kLyZɶwq48z[Cߕz2#2>CCE?IVלu X륈UzcgBBVukNgXWvʹv9ܡZqX].f]a ֥l^)D!A?.,}t3fuHs4oV guqWoXn2HL2Ldߘ'}<:zp8WpY w-ZU{H܁HeKi.\ʺ;PWrP]-Mg^q_(,9$k4y)}&!x{QT+bʷA~u|;&sߕe6xl=:w*qjw5ok:Y##M1&InL?lky_&6?3y?CjNFުlvr{Фf&E9d6m3sdhio sX1"NmX㿁W! +!L{eqGJY_; E>ķ*yJkXT-dPAt0sw>>ϏU#w,fNT7}whbp~ƋspPl` --Nc;$eqb?G ^7m-5߭b^غ٩?6hUWL-mHm`le fv{yvq]=F_">&cR1(3s1]8]>mZqOs|qzDh ]d~EP"Ū t޷0#t**p~++z`䫒&W]ol&mrEʮjs}]$)-lPg1F٫hcT{"Q+=U*ƨ2~Z=)|_a.G"QPC1> 7_v2Z{GuêCa/|nw7Mfzq!L7!L7C$?az>GV>9zW}bOE;"DZ*ru2ǷgxGšxώJP@ 9Mf|I"|@};kAL|\cI>sW>|3|&ǒ39#a׻ԯ9刷323ѝ9ч<<%=9e5sT)}e֚09=]qz09W@MLaArV@MT09@MaArA9U7=}".ysЇ|>AMArƹAMaArA NT09AN< ”> q!#7hiErЇE9=}Cgt!;<|%%:=}ȹZtn!i}"L9C i"L9CΗE.iaArxAN㔈093rqf09xa<=}O^/(9CQ/hic"L9C jy' ”><[)}ș z\)}ȩ=S-”>=K)}9!y#t!4L&(9CNv'9 !g|i "L9CNei%"L9CYqaAr^?SqjODrЇ,$M8kW^C 8Ї[xxEA=}ȹE8dƠ>S?T!${l!sЇXh?p?+5pЇnMq093yx#z"M@PAr np9x z'(”>1'!δʴsЇjB8r;A𳄳;!S8Ҷ٘rЇ3<\O8gs@qQArdG z3@8sAQAr?gi.49C΃V©F=}yO8sAQAr>%OQA[<ƚ'3!g$i8@RAr™zsF8J>:y1#!=἟z7#%! <$h8AmRArfp¹1'!g_G8ARArU|ШsЇ<(.T+!'ïNC>X9CNn -!gCgzh]9CCgu_9Cnp~\zzsΛ9gy 9WzwLCYG#_'$|亮z}>7fixNs~~]6/K5g2/'#C˨NOZ|#5VQFپyXeR@-сeRhK(z;KmX.fyXxުVGھǐX |2+=,w0ѳ+ڴɳ<=? MWMAU _Hɇ5dþF1԰XuڒXZ"f链@(E/ıճ7跱1㾱籷<+N@5:N~_D|W8+h[x?tFO3fz?M7\OppFXJ]}ESQNLg51! nAjz&R[cVלu ۔.xXWWӹRq3V.x փ7·Ǯ.xu1<~o]s}K邳м1 U7t;RW焙=.rts5|Y<$}Ţft'肟'6 ZgrnW](:#Jjy˭36̊8O3XO.xbw<0NOp ?89 㷼2I6}: y;T}: >INO{.yI+{"pt\[$uLt;2wOlI邳(l~(U[H3.xX*:#KwxO1: nw'aR|t34t‡-lIX7oH3v՛o;XtoJiPo,~x_7>÷ɳt紥ۛN5,>ɳԽٱѻ._8 ,!9ۑ]do,1ɒ"wsNM<abR)].xJ< O邧tS)].xJ< O邧tS_u:˷.FR`+]X2}eY߈fVy˴Jocuw"q&>?V~Qk]~7_j>7uZ~G5jYkjgi4OթZCOrB1(C(|Uky {c{>PNRN1eqי/7J{VTZpbzFmo;UX㯾~+T c(l ?DU>`0ڰ\q;LͿا5%"=ڰ_'?Jߝ<|>ʵW?9<ɳ D@D NormalCJ_HaJmH nHsH tHDA@D Default Paragraph FontRiR  Table Normal4 l4a (k(No Listjj !\ Table Grid7:V0<U@< T Hyperlink7>*S*Y(ph5PB'B FComment ReferenceCJaJ<"< F Comment TextCJaJ@j!"@ FComment Subject5\HBH F Balloon TextCJOJQJ^JaJ<OR< 9iaff d6PJaJtH v" v"TG+w"@0@0@0@0 00}qr+,ijs$GH}~$%A+,-6(  q<LMG"Q"R"T"U"V"`"a"c"d"e"f"g"h"i"j"k"l"m"n"o"p"q"r"s"t"w"00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\Mqr+,ijs$GH}~$%A+,6(  q<LMG"Q"R"T"U"V"w"@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0X00"0HX00!Z00X00X00X00Z00!Z00Z00!Z00CX00X00Z00TX00X00X00X00 X00Z00X00Z00 0X00X00X00X00Z00 )v #i&)v* !#$%&'( G*v*")u* "6h,Ev"XXXXXX/X"$Z!ռeJ%LC]"$;$(v,Bz%JF@0(  B S  ?v" OLE_LINK5 OLE_LINK6xxw"w"}<<|=~<<<<<=<<<<<4<<<<<4<<<4<<|4<<,<<<<D<< << <<w<<w<<t<<4<<4 <<<<I<< I<<|<< CQ[[enRR\fw"     MYclpp""Zdhhw" >*urn:schemas-microsoft-com:office:smarttags PostalCode: *urn:schemas-microsoft-com:office:smarttagsStreet=*urn:schemas-microsoft-com:office:smarttags PlaceType=*urn:schemas-microsoft-com:office:smarttags PlaceName; *urn:schemas-microsoft-com:office:smarttagsaddress8*urn:schemas-microsoft-com:office:smarttagsCityB*urn:schemas-microsoft-com:office:smarttagscountry-region9*urn:schemas-microsoft-com:office:smarttagsplace  2 uyBP38 % ( - " ' %*TYY^27inHPty SZz[_qy#*!!n"w"T X NQqn"w"333333CDEKh h     k k  p u %%Zhim_bgo 1FUe*Z57HJ 3FFLO:L- 3 : C!I!a!h!`"l"m"n"w"n"w"h=_WS nc < * P S u?.$)]893# Q%y*"+b+,i,i-w .k 1,91CQ1627S7+,9:b0<l<=1>:??J?Դ?~?/#K>24d]"]"2qHX ? ;2YNo evidence of thermal adaptation of microbial respiration in the study of Bradford et al Iain Hartley Iain HartleyOh+'0 ,8L dp   \No evidence of thermal adaptation of microbial respiration in the study of Bradford et alIain Hartley Normal.dotIain Hartley2Microsoft Office Word@F#@$Ï@$Ï#K՜.+,D՜.+,T hp  6ҪԹ>]"' ZNo evidence of thermal adaptation of microbial respiration in the study of Bradford et al Title 8@ _PID_HLINKSA$3Vmailto:i.p.hartley@stir.ac.uk8Jc  mailto:philip.wookey@stir.ac.uk87 #mailto:M.Sommerkorn@macaulay.ac.uk8@+#mailto:M.Garnett@nercrcl.gla.ac.uk8%Jmailto:d.w.hopkins@scri.ac.uk83Vmailto:i.p.hartley@stir.ac.uk8  !"#$%&'()*,-./0123456789:;<=>?@ABCDFGHIJKLMNOPQRSTUVWXYZ[\]_`abcdeghijklmpRoot Entry FqcďrData +C31TableE0WordDocument.TSummaryInformation(^DocumentSummaryInformation8fCompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q