Article
Details
Citation
Ullah A, Li J & Hussain A (2020) Design and evaluation of a biologically-inspired cloud elasticity framework. Cluster Computing, 23 (4), pp. 3095-3117. https://doi.org/10.1007/s10586-020-03073-7
Abstract
The elasticity in cloud is essential to the effective management of computational resources as it enables readjustment at runtime to meet application demands. Over the years, researchers and practitioners have proposed many auto-scaling solutions using versatile techniques ranging from simple if-then-else based rules to sophisticated optimisation, control theory and machine learning based methods. However, despite an extensive range of existing elasticity research, the aim of implementing an efficient scaling technique that satisfies the actual demands is still a challenge to achieve. The existing methods suffer from issues like: (1) the lack of adaptability and static scaling behaviour whilst considering completely fixed approaches; (2) the burden of additional computational overhead, the inability to cope with the sudden changes in the workload behaviour and the preference of adaptability over reliability at runtime whilst considering the fully dynamic approaches; and (3) the lack of considering uncertainty aspects while designing auto-scaling solutions. In this paper, we aim to address these issues using a holistic biologically-inspired feedback switch controller. This method utilises multiple controllers and a switching mechanism, implemented using fuzzy system, that realises the selection of suitable controller at runtime. The fuzzy system also facilitates the design of qualitative elasticity rules. Furthermore, to improve the possibility of avoiding the oscillatory behaviour (a problem commonly associated with switch methodologies), this paper integrates a biologically-inspired computational model of action selection. Lastly, we identify seven different kinds of real workload patterns and utilise them to evaluate the performance of the proposed method against the state-of-the-art approaches. The obtained computational results demonstrate that the proposed method results in achieving better performance without incurring any additional cost in comparison to the state-of-the-art approaches.
Keywords
Cloud elasticity; Dynamic resource provisioning; Fuzzy control system Basal ganglia; Auto-scaling; Switched controller; Elastic feedback controller
Journal
Cluster Computing: Volume 23, Issue 4
Status | Published |
---|---|
Publication date | 31/12/2020 |
Publication date online | 28/02/2020 |
Date accepted by journal | 14/02/2020 |
URL | |
Publisher | Springer Science and Business Media LLC |
ISSN | 1386-7857 |
eISSN | 1573-7543 |