Article
Details
Citation
Black A, Klinkowska O, McMillan D & McMillan F (2014) Forecasting Stock Returns: Do Commodities Prices Help?. Journal of Forecasting, 33 (8), pp. 627-639. https://doi.org/10.1002/for.2314
Abstract
This paper examines the relationship between stock prices and commodity prices and whether this can be used to forecast stock returns. As both prices are linked to expected future economic performance they should exhibit a long-run relationship. Moreover, changes in sentiment towards commodity investing may affect the nature of the response to disequilibrium. Results support cointegration between stock and commodity prices, while Bai–Perron tests identify breaks in the forecast regression. Forecasts are computed using a standard fixed (static) in-sample/out-of-sample approach and by both recursive and rolling regressions, which incorporate the effects of changing forecast parameter values. A range of model specifications and forecast metrics are used. The historical mean model outperforms the forecast models in both the static and recursive approaches. However, in the rolling forecasts, those models that incorporate information from the long-run stock price/commodity price relationship outperform both the historical mean and other forecast models. Of note, the historical mean still performs relatively well compared to standard forecast models that include the dividend yield and short-term interest rates but not the stock/commodity price ratio.
Keywords
stock prices; commodity prices; forecasting; rolling
Journal
Journal of Forecasting: Volume 33, Issue 8
Status | Published |
---|---|
Publication date | 31/12/2014 |
Publication date online | 20/10/2014 |
Date accepted by journal | 27/06/2014 |
URL | |
Publisher | Wiley-Blackwell |
ISSN | 0277-6693 |
eISSN | 1099-131X |
People (1)
Professor in Finance, Accounting & Finance