我要吃瓜

Article

The biogeochemical iron cycle and astrobiology

Details

Citation

Schr?der C, K?hler I, Muller F, Chumakov A, Kupenko I, Rüffer R & Kappler A (2016) The biogeochemical iron cycle and astrobiology. Hyperfine Interactions, 237 (1), Art. No.: 85. https://doi.org/10.1007/s10751-016-1289-2

Abstract
Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observation of a ‘rusty carbon sink’ observed in modern sediments. The stabilisation of Fe-organic matter may also aid transport of particulate Fe in the water column while having on adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and are therefore difficult to study with standard mineralogical tools. Sequential extraction techniques are commonly used as proxies. We provide an example where Mössbauer spectroscopy can replace sequential extraction techniques where mineralogical information is sought. Where mineral separation is needed, for example in the investigation of Fe or S isotope fractionation, Mössbauer spectroscopy can help to optimize sequential extraction procedures. This can be employed in large number of investigations of soils and sediments, potentially even for mineral separation to study Fe and S isotope fractionation in samples returned from Mars, which might reveal signatures of biological activity. When looking for the possibility of life outside Earth, Jupiter’s icy moon Europa is one of the most exciting places. It may be just in reach for a Mössbauer spectrometer deployed by a future lander to study the red streak mineral deposits on its surface to look for clues about the composition of the ocean hidden under the moon’s icy surface.

Keywords
M?ssbauer spectroscopy; Iron bioavailability; Sequential extraction; Synchrotron M?ssbauer Source (SMS)

Journal
Hyperfine Interactions: Volume 237, Issue 1

StatusPublished
Funders
Publication date31/12/2016
Publication date online21/03/2016
Date accepted by journal28/10/2015
URL
PublisherSpringer
ISSN0304-3843
eISSN1572-9540

Projects (1)

Files (1)