Article
Details
Citation
Fenton A, Fairbairn JP, Norman R & Hudson PJ (2002) Parasite transmission: reconciling theory and reality. Journal of Animal Ecology, 71 (5), pp. 893-905. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2656.2002.00656.x/abstract?systemMessage=Wiley+Online+Library+will+be+disrupted+on+9+June+from+10%3A00-12%3A00+BST+%2805%3A00-07%3A00+EDT%29+for+essential+maintenance; https://doi.org/10.1046/j.1365-2656.2002.00656.x
Abstract
1 Arguably the most important and elusive component of host-parasite models is the transmission function. Considerable empirical and theoretical work has focused on determining the correct formulation of this function although, to date, there has been little attempt to combine these studies to develop general insights into how observed transmission rates affect host-parasite dynamics. 2 Here, estimates of transmission rates from a range of host-parasite systems in the literature are described using a phenomenological function which takes into account how transmission varies with host and parasite densities. This function is placed in the appropriate model framework to determine the consequences of the observed transmission rates for each system. 3 All of the parasites had decreasing per capita transmission rates with increasing parasite densities suggesting that parasites tend to saturate at high densities, either as hosts become limiting or due to heterogeneities amongst the host population. In terms of the responses to host density, the parasites fell into two groups: those with increasing or decreasing transmission rates. This dichotomy was due to the biology of the organisms; the former group infect through cannibalism, which increased at high densities as the individuals became stressed, whereas the latter group infected through free-living stages, resulting in a form of spatial structuring reducing the number of hosts available for infection. 4 A metapopulation model was developed where hosts and parasites interacted in discrete patches according to the appropriate transmission function, with neighbouring patches linked by dispersal. The model suggested that small-scale, localized transmission events can drive large-scale epizootics at the metapopulation level. This emphasizes the importance of correctly describing and quantifying the transmission function at the individual level. 5 Traditionally, the formulation of the transmission function has depended on the scale of observation. This work shows that transmission should be considered from the viewpoint of the organisms concerned. Observed transmission rates are a consequence of the biology of the individuals meaning it should be possible to develop a priori hypotheses concerning the nature of the transmission function from a basic understanding of the life history of the organisms concerned.
Keywords
microparasite; non-linear transmission; parasite persistence; spatial model
Journal
Journal of Animal Ecology: Volume 71, Issue 5
Status | Published |
---|---|
Publication date | 30/09/2002 |
Publication date online | 06/09/2002 |
URL | |
Publisher | John Wiley & Sons |
Publisher URL | |
ISSN | 0021-8790 |
eISSN | 1365-2656 |
People (1)
Chair in Food Security & Sustainability, Mathematics