Conference Paper (published)
Details
Citation
Dashtipour K, Gogate M, Adeel A, Hussain A, Alqarafi A & Durrani T (2019) A comparative study of Persian sentiment analysis based on different feature combinations. In: Liang Q, Mu J, Jia M, Wang W, Feng X & Zhang B (eds.) Communications, Signal Processing, and Systems. CSPS 2017. Lecture Notes in Electrical Engineering, 463. CSPS 2017: Communications, Signal Processing, and System, Harbin, China, 14.07.2017-16.07.2017. Cham, Switzerland: Springer, pp. 2288-2294. https://doi.org/10.1007/978-981-10-6571-2_279
Abstract
In recent years, the use of internet and correspondingly the number of online reviews, comments and opinions have increased significantly. It is indeed very difficult for humans to read these opinions and classify them accurately. Consequently, there is a need for an automated system to process this big data. In this paper, a novel sentiment analysis framework for Persian language has been proposed. The proposed framework comprises three basic steps: pre-processing, feature extraction, and support vector machine (SVM) based classification. The performance of the proposed framework has been evaluated taking into account different features combinations. The simulation results have revealed that the best performance could be achieved by integrating unigram, bigram, and trigram features.
Keywords
Sentiment analysis; Persian; Feature selection; N-gram
Status | Published |
---|---|
Funders | |
Title of series | Lecture Notes in Electrical Engineering |
Number in series | 463 |
Publication date | 31/12/2019 |
Publication date online | 07/06/2018 |
URL | |
Publisher | Springer |
Place of publication | Cham, Switzerland |
ISSN of series | 1876-1100 |
ISBN | 978-981-10-6570-5; 978-981-10-6571-2 |
Conference | CSPS 2017: Communications, Signal Processing, and System |
Conference location | Harbin, China |
Dates | – |
People (2)
Assoc. Prof. in Artificial Intelligence, Computing Science and Mathematics - Division
Honorary Professor, Computing Science